Difference between revisions of "2021 Fall AMC 10B Problems/Problem 13"

(Problem)
Line 22: Line 22:
 
<math>(\textbf{A})\: 19\frac14\qquad(\textbf{B}) \: 20\frac14\qquad(\textbf{C}) \: 21 \frac34\qquad(\textbf{D}) \: 22\frac12\qquad(\textbf{E}) \: 23\frac34</math>
 
<math>(\textbf{A})\: 19\frac14\qquad(\textbf{B}) \: 20\frac14\qquad(\textbf{C}) \: 21 \frac34\qquad(\textbf{D}) \: 22\frac12\qquad(\textbf{E}) \: 23\frac34</math>
  
==Solution==
+
 
 +
==Solution 1==
 +
 
 +
Let's split the triangle down the middle:
 +
 
 +
<asy>
 +
 
 +
import olympiad;
 +
pair A,B,C,D,E,F,G,H,I,J,K;
 +
A = origin; B = (0.25,0); C=(1.25,0); D=(1.5,0); E = (0.25,1); F=(0.4166666667,1); G=(1.08333333333,1); H=(1.25,1); I=(0.4166666667,1.66666666667); J=(1.08333333333,1.666666666667); K=(0.75,3);
 +
draw(A--D--K--cycle);
 +
draw(B--E);
 +
draw(C--H);
 +
draw(F--I);
 +
draw(G--J);
 +
draw(I--J);
 +
draw(E--H);
 +
draw(I--(0.75,0));
 +
 
 +
 
 +
</asy>
 +
 
 +
 
 +
==Solution 2==
 
By similarity, the height is <math>3+\frac31\cdot2=9</math> and the base is <math>\frac92\cdot1=4.5</math>.  
 
By similarity, the height is <math>3+\frac31\cdot2=9</math> and the base is <math>\frac92\cdot1=4.5</math>.  
 
Thus the area is <math>\frac{9\cdot4.5}2=20.25=20\frac14</math>, or <math>\boxed{(\textbf{B})}</math>.  
 
Thus the area is <math>\frac{9\cdot4.5}2=20.25=20\frac14</math>, or <math>\boxed{(\textbf{B})}</math>.  

Revision as of 15:36, 24 November 2021

Problem

A square with side length $3$ is inscribed in an isosceles triangle with one side of the square along the base of the triangle. A square with side length $2$ has two vertices on the other square and the other two on sides of the triangle, as shown. What is the area of the triangle?

[asy]  import olympiad; pair A,B,C,D,E,F,G,H,I,J,K; A = origin; B = (0.25,0); C=(1.25,0); D=(1.5,0); E = (0.25,1); F=(0.4166666667,1); G=(1.08333333333,1); H=(1.25,1); I=(0.4166666667,1.66666666667); J=(1.08333333333,1.666666666667); K=(0.75,3); draw(A--D--K--cycle); draw(B--E); draw(C--H); draw(F--I); draw(G--J); draw(I--J); draw(E--H);   [/asy]


$(\textbf{A})\: 19\frac14\qquad(\textbf{B}) \: 20\frac14\qquad(\textbf{C}) \: 21 \frac34\qquad(\textbf{D}) \: 22\frac12\qquad(\textbf{E}) \: 23\frac34$


Solution 1

Let's split the triangle down the middle:

[asy]  import olympiad; pair A,B,C,D,E,F,G,H,I,J,K; A = origin; B = (0.25,0); C=(1.25,0); D=(1.5,0); E = (0.25,1); F=(0.4166666667,1); G=(1.08333333333,1); H=(1.25,1); I=(0.4166666667,1.66666666667); J=(1.08333333333,1.666666666667); K=(0.75,3); draw(A--D--K--cycle); draw(B--E); draw(C--H); draw(F--I); draw(G--J); draw(I--J); draw(E--H); draw(I--(0.75,0));   [/asy]


Solution 2

By similarity, the height is $3+\frac31\cdot2=9$ and the base is $\frac92\cdot1=4.5$. Thus the area is $\frac{9\cdot4.5}2=20.25=20\frac14$, or $\boxed{(\textbf{B})}$.

~Hefei417, or 陆畅 Sunny from China

See Also

2021 Fall AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png