Difference between revisions of "2021 Fall AMC 10B Problems/Problem 13"
(→Problem) |
|||
Line 22: | Line 22: | ||
<math>(\textbf{A})\: 19\frac14\qquad(\textbf{B}) \: 20\frac14\qquad(\textbf{C}) \: 21 \frac34\qquad(\textbf{D}) \: 22\frac12\qquad(\textbf{E}) \: 23\frac34</math> | <math>(\textbf{A})\: 19\frac14\qquad(\textbf{B}) \: 20\frac14\qquad(\textbf{C}) \: 21 \frac34\qquad(\textbf{D}) \: 22\frac12\qquad(\textbf{E}) \: 23\frac34</math> | ||
− | ==Solution== | + | |
+ | ==Solution 1== | ||
+ | |||
+ | Let's split the triangle down the middle: | ||
+ | |||
+ | <asy> | ||
+ | |||
+ | import olympiad; | ||
+ | pair A,B,C,D,E,F,G,H,I,J,K; | ||
+ | A = origin; B = (0.25,0); C=(1.25,0); D=(1.5,0); E = (0.25,1); F=(0.4166666667,1); G=(1.08333333333,1); H=(1.25,1); I=(0.4166666667,1.66666666667); J=(1.08333333333,1.666666666667); K=(0.75,3); | ||
+ | draw(A--D--K--cycle); | ||
+ | draw(B--E); | ||
+ | draw(C--H); | ||
+ | draw(F--I); | ||
+ | draw(G--J); | ||
+ | draw(I--J); | ||
+ | draw(E--H); | ||
+ | draw(I--(0.75,0)); | ||
+ | |||
+ | |||
+ | </asy> | ||
+ | |||
+ | |||
+ | ==Solution 2== | ||
By similarity, the height is <math>3+\frac31\cdot2=9</math> and the base is <math>\frac92\cdot1=4.5</math>. | By similarity, the height is <math>3+\frac31\cdot2=9</math> and the base is <math>\frac92\cdot1=4.5</math>. | ||
Thus the area is <math>\frac{9\cdot4.5}2=20.25=20\frac14</math>, or <math>\boxed{(\textbf{B})}</math>. | Thus the area is <math>\frac{9\cdot4.5}2=20.25=20\frac14</math>, or <math>\boxed{(\textbf{B})}</math>. |
Revision as of 15:36, 24 November 2021
Contents
Problem
A square with side length is inscribed in an isosceles triangle with one side of the square along the base of the triangle. A square with side length has two vertices on the other square and the other two on sides of the triangle, as shown. What is the area of the triangle?
Solution 1
Let's split the triangle down the middle:
Solution 2
By similarity, the height is and the base is . Thus the area is , or .
~Hefei417, or 陆畅 Sunny from China
See Also
2021 Fall AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.