Difference between revisions of "2021 Fall AMC 10B Problems/Problem 15"
(added 'signature' to solution 2, (added solution 2 in previous edit, forgot to summarize it oops)) |
(→Solution 2: oops accidentally put \cong instead of \sim) |
||
Line 30: | Line 30: | ||
==Solution 2== | ==Solution 2== | ||
− | We have that <math>\triangle CRB \ | + | We have that <math>\triangle CRB \sim \triangle BAP.</math> Thus, <math>\frac{\overline{CB}}{\overline{CR}} = \frac{\overline{PB}}{\overline{AB}}</math>. Now, let the side length of the square be <math>s.</math> Then, by the Pythagorean theorem, <math>CR = \sqrt{x^2-36}.</math> Plugging all of this information in, we get <cmath>\frac{s}{\sqrt{s^2-36}} = \frac{13}{s}.</cmath> Simplifying gives <cmath>s^2=13\sqrt{s^2-36},</cmath> Squaring both sides gives <cmath>s^4 = 169s^2- 169\cdot 36 \implies s^4-169s^2 + 169\cdot 36 = 0.</cmath> We now set <math>s^2=t,</math> and get the equation <math>t^2-169t + 169\cdot 36 = 0.</math> From here, notice we want to solve for <math>t</math>, as it is precisely <math>s^2,</math> or the area of the square. So we use the [[Quadratic formula]], and though it may seem bashy, we hope for a nice cancellation of terms. <cmath>t = \frac{169\pm\sqrt{169^2-4\cdot 36 \cdot 169}}{2}.</cmath> It seems scary, but factoring <math>169</math> from the square root gives us <cmath>t = \frac{169\pm \sqrt{169 \cdot (169-144)}}{2} = \frac{169 \pm \sqrt{169 \cdot 25}}{2} = \frac{169 \pm 13\cdot 5}{2} = \frac{169\pm 65}{2},</cmath> giving us the solutions <cmath>t=52, 117.</cmath> We instantly see that <math>t=52</math> is way too small to be an area of this square (<math>52</math> isn't even an answer choice, so you can skip this step if out of time) because then the side length would be <math>2\sqrt{13}</math> and then, even the largest line you can draw inside the square (the diagonal) is <math>2\sqrt{26},</math> which is less than <math>13</math> (line <math>PB</math>) And thus, <math>t</math> must be <math>117</math>, and our answer is <math>\boxed{\textbf{(D)}}.</math> <math>\blacksquare</math> |
~wamofan | ~wamofan |
Revision as of 18:56, 24 November 2021
Contents
Problem
In square , points and lie on and , respectively. Segments and intersect at right angles at , with and . What is the area of the square?
Solution
Note that Then, it follows that Thus, Define to be the length of side then Because is the altitude of the triangle, we can use the property that Substituting the given lengths, we have Solving, gives and We eliminate the possibilty of because Thus, the side lengnth of the square, by Pythagorean Theorem, is Thus, the area of the sqaure is Thus, the answer is
~NH14
Solution 2
We have that Thus, . Now, let the side length of the square be Then, by the Pythagorean theorem, Plugging all of this information in, we get Simplifying gives Squaring both sides gives We now set and get the equation From here, notice we want to solve for , as it is precisely or the area of the square. So we use the Quadratic formula, and though it may seem bashy, we hope for a nice cancellation of terms. It seems scary, but factoring from the square root gives us giving us the solutions We instantly see that is way too small to be an area of this square ( isn't even an answer choice, so you can skip this step if out of time) because then the side length would be and then, even the largest line you can draw inside the square (the diagonal) is which is less than (line ) And thus, must be , and our answer is
~wamofan
See Also
2021 Fall AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.