Difference between revisions of "1998 IMO Shortlist Problems/A3"
Line 1: | Line 1: | ||
− | Let <math>x,y | + | Let <math>x,y,z</math> be positive real numbers such that <math>xyz=1</math>. Prove that |
− | <math>\frac{x^3}{(1+y)(1+z)}+\frac{y^3}{(1+x)(1+z)}+\ | + | <math>\frac{x^3}{(1+y)(1+z)}+\frac{y^3}{(1+x)(1+z)}+\frac{z^3}{(1+x)(1+y)}\geq\frac{3}{4}</math> |
Revision as of 00:30, 19 December 2021
Let be positive real numbers such that . Prove that