Difference between revisions of "2021 WSMO Speed Round Problems/Problem 3"

(Created page with "==Problem== Let <math>a@b=\frac{a^2-b^2}{a+b}</math>. Find the value of <math>1@(2@(\dots(2020@2021)\dots)</math>. ==Solution== Note that <math>a^2-b^2=(a-b)(a+b).</math> Thi...")
 
(Solution)
 
Line 4: Line 4:
 
==Solution==
 
==Solution==
 
Note that <math>a^2-b^2=(a-b)(a+b).</math> This means that <math>a@b=a-b.</math> Now, <math>a@(b@c)=a-(b-c)=a-b+c</math> and <math>a@(b@(c@d))=a-(b-(c-d))=a-b+c-d.</math> Using this pattern, we find that <cmath>1@(2@(\dots(2020@2021)\dots)=1-2+3-4+\ldots-2020+2021=</cmath><cmath>(1-2)+(3-4)+\ldots+(2019-2020)+2021=-1010+2021=\boxed{1011}.</cmath>
 
Note that <math>a^2-b^2=(a-b)(a+b).</math> This means that <math>a@b=a-b.</math> Now, <math>a@(b@c)=a-(b-c)=a-b+c</math> and <math>a@(b@(c@d))=a-(b-(c-d))=a-b+c-d.</math> Using this pattern, we find that <cmath>1@(2@(\dots(2020@2021)\dots)=1-2+3-4+\ldots-2020+2021=</cmath><cmath>(1-2)+(3-4)+\ldots+(2019-2020)+2021=-1010+2021=\boxed{1011}.</cmath>
 +
 +
~pinkpig

Latest revision as of 09:20, 23 December 2021

Problem

Let $a@b=\frac{a^2-b^2}{a+b}$. Find the value of $1@(2@(\dots(2020@2021)\dots)$.

Solution

Note that $a^2-b^2=(a-b)(a+b).$ This means that $a@b=a-b.$ Now, $a@(b@c)=a-(b-c)=a-b+c$ and $a@(b@(c@d))=a-(b-(c-d))=a-b+c-d.$ Using this pattern, we find that \[1@(2@(\dots(2020@2021)\dots)=1-2+3-4+\ldots-2020+2021=\]\[(1-2)+(3-4)+\ldots+(2019-2020)+2021=-1010+2021=\boxed{1011}.\]

~pinkpig