Difference between revisions of "2002 AIME I Problems/Problem 12"

(Problem)
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Let <math>F(z)=\dfrac{z+1}{z-1}</math> for all complet numbers <math>z\neq 1</math>, and let <math>z_n=F(z_{n-1})</math> for all positive integers <math>n</math>. Given that <math>z_0=\dfrac{1}{137}+i</math> and <math>z_{2002}=a+bi</math>, where <math>a</math> and <math>b</math> are real numbers, find <math>a+b</math>.
+
Let <math>F(z)=\dfrac{z+1}{z-1}</math> for all complex numbers <math>z\neq 1</math>, and let <math>z_n=F(z_{n-1})</math> for all positive integers <math>n</math>. Given that <math>z_0=\dfrac{1}{137}+i</math> and <math>z_{2002}=a+bi</math>, where <math>a</math> and <math>b</math> are real numbers, find <math>a+b</math>.
  
 
== Solution ==
 
== Solution ==

Revision as of 16:12, 25 September 2007

Problem

Let $F(z)=\dfrac{z+1}{z-1}$ for all complex numbers $z\neq 1$, and let $z_n=F(z_{n-1})$ for all positive integers $n$. Given that $z_0=\dfrac{1}{137}+i$ and $z_{2002}=a+bi$, where $a$ and $b$ are real numbers, find $a+b$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also