Difference between revisions of "2022 AMC 10A Problems/Problem 6"
Mathwizard09 (talk | contribs) m (→Solution 2) |
MRENTHUSIASM (talk | contribs) |
||
Line 5: | Line 5: | ||
<math>\textbf{(A) } 3-2a \qquad \textbf{(B) } 1-a \qquad \textbf{(C) } 1 \qquad \textbf{(D) } a+1 \qquad \textbf{(E) } 3</math> | <math>\textbf{(A) } 3-2a \qquad \textbf{(B) } 1-a \qquad \textbf{(C) } 1 \qquad \textbf{(D) } a+1 \qquad \textbf{(E) } 3</math> | ||
− | == Solution == | + | == Solution 1 == |
We have | We have | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
Line 16: | Line 16: | ||
== Solution 2 == | == Solution 2 == | ||
− | + | Assume that <math>a=-1.</math> Then, the given expression simplifies to <math>5</math>: | |
− | <cmath>\left|a-2-\sqrt{(a-1)^2}\right| = \left|-1-2-\sqrt{(-1-1)^2}\right| | + | <cmath>\begin{align*} |
− | = \left|-1-2-\sqrt{4}\right| | + | \left|a-2-\sqrt{(a-1)^2}\right| &= \left|-1-2-\sqrt{(-1-1)^2}\right| \\ |
− | = \left|-1-2-2\right| | + | &= \left|-1-2-\sqrt{4}\right| \\ |
− | = 5.</cmath> | + | &= \left|-1-2-2\right| \\ |
− | + | &= 5. | |
+ | \end{align*}</cmath> | ||
Then, we test each of the answer choices to see which one is equal to <math>5</math>: | Then, we test each of the answer choices to see which one is equal to <math>5</math>: | ||
− | <math>A | + | <math>\textbf{(A) } 3-2a = 3-2\cdot(-1) = 3+2 = 5.</math> |
− | <math>B | + | <math>\textbf{(B) } 1-a = 1-(-1) = 2 \neq 5.</math> |
− | <math>C | + | <math>\textbf{(C) } 1 \neq 5.</math> |
− | <math>D | + | <math>\textbf{(D) } a+1 = -1+1 = 0 \neq 5.</math> |
− | <math>E | + | <math>\textbf{(E) } 3 \neq 5.</math> |
− | The only answer choice equal to <math>5</math> for <math>a=-1</math> | + | The only answer choice equal to <math>5</math> for <math>a=-1</math> is <math>\boxed{\textbf{(A) } 3-2a}.</math> |
-MathWizard09 | -MathWizard09 |
Revision as of 02:35, 12 November 2022
Contents
Problem
Which expression is equal to for
Solution 1
We have ~MRENTHUSIASM
Solution 2
Assume that Then, the given expression simplifies to : Then, we test each of the answer choices to see which one is equal to :
The only answer choice equal to for is
-MathWizard09
See Also
2022 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.