Difference between revisions of "2022 AMC 10A Problems/Problem 22"

(Problem)
(Problem)
Line 32: Line 32:
  
 
<math>\textbf{(A) }4082\qquad\textbf{(B) }4095\qquad\textbf{(C) }4096\qquad\textbf{(D) }8178\qquad\textbf{(E) }8191</math>
 
<math>\textbf{(A) }4082\qquad\textbf{(B) }4095\qquad\textbf{(C) }4096\qquad\textbf{(D) }8178\qquad\textbf{(E) }8191</math>
 +
 +
== See Also ==
 +
 +
{{AMC10 box|year=2022|ab=A|num-b=23|num-a=25}}
 +
{{MAA Notice}}
  
 
==Solution by Omega Learn Using Combinatorial Identities and Overcounting==
 
==Solution by Omega Learn Using Combinatorial Identities and Overcounting==
 
https://www.youtube.com/watch?v=gW8gPEEHSfU&list=PLT9bNzqjDoMl3jNviYrczw7Ck_ArS54Xn&index=6
 
https://www.youtube.com/watch?v=gW8gPEEHSfU&list=PLT9bNzqjDoMl3jNviYrczw7Ck_ArS54Xn&index=6

Revision as of 03:11, 12 November 2022

Problem

Suppose that 13 cards numbered $1, 2, 3, \cdots, 13$ are arranged in a row. The task is to pick them up in numerically increasing order, working repeatedly from left to right. In the example below, cards 1, 2, 3 are picked up on the first pass, 4 and 5 on the second pass, 6 on the third pass, 7, 8, 9, 10 on the fourth pass, and 11, 12, 13 on the fifth pass. For how many of the $13!$ possible orderings of the cards will the $13$ cards be picked up in exactly two passes?

[asy]size(11cm); draw((0,0)--(2,0)--(2,3)--(0,3)--cycle); label("7", (1,1.5)); draw((3,0)--(5,0)--(5,3)--(3,3)--cycle); label("11", (4,1.5)); draw((6,0)--(8,0)--(8,3)--(6,3)--cycle); label("8", (7,1.5)); draw((9,0)--(11,0)--(11,3)--(9,3)--cycle); label("6", (10,1.5)); draw((12,0)--(14,0)--(14,3)--(12,3)--cycle); label("4", (13,1.5)); draw((15,0)--(17,0)--(17,3)--(15,3)--cycle); label("5", (16,1.5)); draw((18,0)--(20,0)--(20,3)--(18,3)--cycle); label("9", (19,1.5)); draw((21,0)--(23,0)--(23,3)--(21,3)--cycle); label("12", (22,1.5)); draw((24,0)--(26,0)--(26,3)--(24,3)--cycle); label("1", (25,1.5)); draw((27,0)--(29,0)--(29,3)--(27,3)--cycle); label("13", (28,1.5)); draw((30,0)--(32,0)--(32,3)--(30,3)--cycle); label("10", (31,1.5)); draw((33,0)--(35,0)--(35,3)--(33,3)--cycle); label("2", (34,1.5)); draw((36,0)--(38,0)--(38,3)--(36,3)--cycle); label("3", (37,1.5)); [/asy]

$\textbf{(A) }4082\qquad\textbf{(B) }4095\qquad\textbf{(C) }4096\qquad\textbf{(D) }8178\qquad\textbf{(E) }8191$

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Solution by Omega Learn Using Combinatorial Identities and Overcounting

https://www.youtube.com/watch?v=gW8gPEEHSfU&list=PLT9bNzqjDoMl3jNviYrczw7Ck_ArS54Xn&index=6