Difference between revisions of "2022 AMC 10A Problems/Problem 2"

(Solution)
(Solution)
Line 4: Line 4:
 
<math>\textbf{(A) } 5 \qquad\textbf{(B) } 7 \qquad\textbf{(C) } 9 \qquad\textbf{(D) } 11 \qquad\textbf{(E) } 13</math>
 
<math>\textbf{(A) } 5 \qquad\textbf{(B) } 7 \qquad\textbf{(C) } 9 \qquad\textbf{(D) } 11 \qquad\textbf{(E) } 13</math>
  
== Solution ==  
+
== Solution 1==  
  
 
Mike's speed is <math>\frac{15}{57}=\frac{5}{19}</math> laps per minute.
 
Mike's speed is <math>\frac{15}{57}=\frac{5}{19}</math> laps per minute.
Line 11: Line 11:
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM
 +
 +
== Solution 2==
 +
 +
Mike runs <math>1</math> lap in <math>\frac{57}{15}=\frac{19}{5}</math> minutes. So, in <math>27</math> minutes, Mike ran about <math>\frac{27}{\frac{19}{5}} \approx \boxed{\textbf{(B) }7}</math> laps.
 +
 +
~MrThinker
  
 
==Video Solution 1 (Quick and Easy)==
 
==Video Solution 1 (Quick and Easy)==

Revision as of 14:39, 14 November 2022

Problem

Mike cycled $15$ laps in $57$ minutes. Assume he cycled at a constant speed throughout. Approximately how many laps did he complete in the first $27$ minutes?

$\textbf{(A) } 5 \qquad\textbf{(B) } 7 \qquad\textbf{(C) } 9 \qquad\textbf{(D) } 11 \qquad\textbf{(E) } 13$

Solution 1

Mike's speed is $\frac{15}{57}=\frac{5}{19}$ laps per minute.

In the first $27$ minutes, he completed approximately $\frac{5}{19}\cdot27\approx\frac{1}{4}\cdot28=\boxed{\textbf{(B) } 7}$ laps.

~MRENTHUSIASM

Solution 2

Mike runs $1$ lap in $\frac{57}{15}=\frac{19}{5}$ minutes. So, in $27$ minutes, Mike ran about $\frac{27}{\frac{19}{5}} \approx \boxed{\textbf{(B) }7}$ laps.

~MrThinker

Video Solution 1 (Quick and Easy)

https://youtu.be/tu4rE1nqY9g

~Education, the Study of Everything

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png