Difference between revisions of "2022 AMC 10B Problems/Problem 25"
(→Solution (Base-2 Analysis)) |
(→Solution (Base-2 Analysis)) |
||
Line 37: | Line 37: | ||
The equation above can be reformulated as: | The equation above can be reformulated as: | ||
− | + | \begin{table} | |
\begin{tabular}{ccccccccc} | \begin{tabular}{ccccccccc} | ||
& <math>\cdots</math> & 0 & <math>\cdots</math> & 0 & 0 & 0 & 0 & 0 \\ | & <math>\cdots</math> & 0 & <math>\cdots</math> & 0 & 0 & 0 & 0 & 0 \\ | ||
Line 45: | Line 45: | ||
& <math>x_{n-1}</math> <math>x_{n-2}</math> <math>x_{n-3}</math> & <math>x_{n-4}</math> & <math>\cdots</math> & <math>x_1</math> & <math>x_0</math> & 0 & 0 & 0\\ | & <math>x_{n-1}</math> <math>x_{n-2}</math> <math>x_{n-3}</math> & <math>x_{n-4}</math> & <math>\cdots</math> & <math>x_1</math> & <math>x_0</math> & 0 & 0 & 0\\ | ||
\end{tabular} | \end{tabular} | ||
− | + | \end{table} | |
Therefore, <math>x_0 = x_1 = x_2 = 1</math>, <math>x_3 = 0</math>, and for <math>k \geq 4</math>, <math>x_k = x_{k-3}</math>. | Therefore, <math>x_0 = x_1 = x_2 = 1</math>, <math>x_3 = 0</math>, and for <math>k \geq 4</math>, <math>x_k = x_{k-3}</math>. |
Revision as of 14:17, 17 November 2022
Problem
Let be a sequence of numbers, where each is either 0 or 1. For each positive integer , define
Suppose for all . What is the value of the sum
Solution (Base-2 Analysis)
We solve this problem with base 2. To avoid any confusion, for a base-2 number, we index the th rightmost digit as digit .
We have .
In the base-2 representation, is equivalent to
In the rest of the analysis, to lighten notation, we ease the base-2 subscription from all numbers. The equation above can be reformulated as:
\begin{table} \begin{tabular}{ccccccccc}
& & 0 & & 0 & 0 & 0 & 0 & 0 \\ & & & & & & & & 1 \\ & & & & & & & & \\ \hline %or \bottomrule if using the `booktabs` package & & & & & & 0 & 0 & 0\\ \end{tabular}
\end{table}
Therefore, , , and for , .
Therefore,
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)