Difference between revisions of "2022 AMC 12B Problems/Problem 14"
Mathboy100 (talk | contribs) (→Solution 3) |
Mathboy100 (talk | contribs) (→Solution 3) |
||
Line 29: | Line 29: | ||
==Solution 3== | ==Solution 3== | ||
− | We can reflect the figure, but still have the same angle. This problem is the same as having points <math>D(0,0)</math>, <math>E(3,15)</math>, and <math>F(-5,15)</math>, where we're solving for angle FED. We can use the formula for <math>\tan(a-b)</math> to solve now where <math>a</math> is the <math>x</math>-axis to angle <math>F</math> and <math>b</math> is the <math>x</math>-axis to angle <math>E</math>. <math>\tan(a) = \textrm{slope of line }DF = -3</math> and <math>\tan(B) = \textrm{slope of line }DE = 5</math>. Plugging these values into the <math>\tan(a-b)</math> formula, we get <math>(-3-5)/(1+(-3 | + | We can reflect the figure, but still have the same angle. This problem is the same as having points <math>D(0,0)</math>, <math>E(3,15)</math>, and <math>F(-5,15)</math>, where we're solving for angle FED. We can use the formula for <math>\tan(a-b)</math> to solve now where <math>a</math> is the <math>x</math>-axis to angle <math>F</math> and <math>b</math> is the <math>x</math>-axis to angle <math>E</math>. <math>\tan(a) = \textrm{slope of line }DF = -3</math> and <math>\tan(B) = \textrm{slope of line }DE = 5</math>. Plugging these values into the <math>\tan(a-b)</math> formula, we get <math>(-3-5)/(1+(-3\cdot 5))</math> which is <math>\boxed{\textbf{(E)}\ \frac{4}{7}}.</math> |
~mathboy100 (minor LaTeX edits) | ~mathboy100 (minor LaTeX edits) |
Revision as of 12:54, 20 November 2022
Problem
The graph of intersects the -axis at points and and the -axis at point . What is ?
Solution 1
intersects the -axis at points and . Without loss of generality, let these points be and respectively. Also, the graph intersects the y-axis at point .
Let point denote the origin . Note that triangles and are right.
We have
Alternatively, we can use the Pythagorean Theorem to find that and and then use the area formula for a triangle and the Law of Cosines to find .
Solution 2
Like above, we set to , to , and to , then finding via the Pythagorean Theorem that and . Using the Law of Cosines, we see that Then, we use the identity to get
~ jamesl123456
Solution 3
We can reflect the figure, but still have the same angle. This problem is the same as having points , , and , where we're solving for angle FED. We can use the formula for to solve now where is the -axis to angle and is the -axis to angle . and . Plugging these values into the formula, we get which is
~mathboy100 (minor LaTeX edits)
See Also
2022 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.