Difference between revisions of "2022 AMC 12B Problems/Problem 10"
Mathboy100 (talk | contribs) |
Mathboy100 (talk | contribs) (→Solution 1 (No trig)) |
||
Line 10: | Line 10: | ||
==Solution 1 (No trig)== | ==Solution 1 (No trig)== | ||
− | Let the center of the hexagon be <math>O</math>. <math>\triangle AOB</math>, <math>\triangle BOC</math>, <math>\triangle COD</math>, <math>\triangle DOE</math>, <math>\triangle EOF</math>, and <math>\triangle FOA</math> are all equilateral triangles with side length <math>2</math>. Thus, <math>CO = | + | Let the center of the hexagon be <math>O</math>. <math>\triangle AOB</math>, <math>\triangle BOC</math>, <math>\triangle COD</math>, <math>\triangle DOE</math>, <math>\triangle EOF</math>, and <math>\triangle FOA</math> are all equilateral triangles with side length <math>2</math>. Thus, <math>CO = 2</math>, and <math>GO = \sqrt{AO^2 - AG^2} = \sqrt{3}</math>. By symmetry, <math>\angle COG = 90^{\circ}</math>. Thus, by the Pythagorean theorem, <math>CG = \sqrt{2^2 + \sqrt{3}^2} = \sqrt{7}</math>. Because <math>CO = OF</math> and <math>GO = OH</math>, <math>CG = HC = FH = GF = \sqrt{7}</math>. Thus, the solution to our problem is <math>\sqrt{7} + \sqrt{7} + \sqrt{7} + \sqrt{7} = \boxed{\textbf{(D)} \ 4 \sqrt 7}</math> |
~mathboy100 | ~mathboy100 |
Revision as of 20:09, 19 November 2022
Problem
Regular hexagon has side length . Let be the midpoint of , and let be the midpoint of . What is the perimeter of ?
Solution 1 (No trig)
Let the center of the hexagon be . , , , , , and are all equilateral triangles with side length . Thus, , and . By symmetry, . Thus, by the Pythagorean theorem, . Because and , . Thus, the solution to our problem is
~mathboy100
Solution 2
Consider triangle . Note that , , and because it is an interior angle of a regular hexagon. (See note for details.)
By the Law of Cosines, we have:
By SAS Congruence, triangles , , , and are congruent, and by CPCTC, quadrilateral is a rhombus. Therefore, the perimeter of is .
Note: The sum of the interior angles of any polygon with sides is given by . Therefore, the sum of the interior angles of a hexagon is , and each interior angle of a regular hexagon measures .
Video Solution 1
~Education, the Study of Everything
See Also
2022 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 9 |
Followed by Problem 11 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.