Difference between revisions of "2022 AMC 10A Problems/Problem 19"
(→Solution 2) |
MRENTHUSIASM (talk | contribs) m (→Solution) |
||
Line 7: | Line 7: | ||
<math>\textbf{(A) } 1 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 5 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 9</math> | <math>\textbf{(A) } 1 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 5 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 9</math> | ||
− | ==Solution== | + | ==Solution 1== |
Notice that <math>L_{17}</math> contains the highest power of every prime below <math>17</math>. Thus, <math>L_{17}=16\cdot 9 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17</math>. | Notice that <math>L_{17}</math> contains the highest power of every prime below <math>17</math>. Thus, <math>L_{17}=16\cdot 9 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17</math>. | ||
Line 15: | Line 15: | ||
We use modular arithmetic to simplify our answer: | We use modular arithmetic to simplify our answer: | ||
− | This is congruent to <math>-1 \cdot 9 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \pmod{17}</math> | + | This is congruent to <math>-1 \cdot 9 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \pmod{17}</math>. |
Evaluating, we get: | Evaluating, we get: |
Revision as of 17:33, 5 December 2022
Problem
Define as the least common multiple of all the integers from to inclusive. There is a unique integer such that What is the remainder when is divided by ?
Solution 1
Notice that contains the highest power of every prime below . Thus, .
When writing the sum under a common fraction, we multiply the denominators by divided by each denominator. However, since is a multiple of , all terms will be a multiple of until we divide out , and the only term that will do this is . Thus, the remainder of all other terms when divided by will be , so the problem is essentially asking us what the remainder of divided by is. This is equivalent to finding the remainder of divided by .
We use modular arithmetic to simplify our answer:
This is congruent to .
Evaluating, we get: Therefore the remainder is .
~KingRavi
~mathboy282
~Scarletsyc
Solution 2
As in solution 1, we express the LHS as a sum under one common denominator. We note that
Now, we have . We'd like to find so we can evaluate our expression Since don't have a factor of in their denominators, and since is a multiple of multiplying each of those terms and adding them will get a multiple of , that result is Thus, we only need to consider Proceed with solution to get .
~sirswagger21
Video Solution By ThePuzzlr
~ MathIsChess
See Also
2022 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.