Difference between revisions of "2022 AMC 12B Problems/Problem 16"
MRENTHUSIASM (talk | contribs) m (→Problem) |
(→Solution 3) |
||
Line 40: | Line 40: | ||
~sirswagger21 | ~sirswagger21 | ||
+ | |||
+ | ==Video Solution(1-16)== | ||
+ | https://youtu.be/SCwQ9jUfr0g | ||
+ | |||
+ | ~~Hayabusa1 | ||
== See Also == | == See Also == | ||
{{AMC12 box|year=2022|ab=B|num-b=15|num-a=17}} | {{AMC12 box|year=2022|ab=B|num-b=15|num-a=17}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 12:34, 5 April 2023
Problem
Suppose and are positive real numbers such that What is the greatest possible value of ?
Solution
Take the base-two logarithm of both equations to get Now taking the base-two logarithm of the first equation again yields It follows that the real numbers and satisfy and . Solving this system yields Thus the largest possible value of is .
cr. djmathman
Solution 2
.
Substitution into yields
.
Solving for yields or , and we take the greater value .
~4SunnyH
Solution 3
Let We have and .
Then, from eq 1, and substituting in to eq 2, Thus,
Solving for using the quadratic formula gets Since we are looking for which equals we put as our answer.
~sirswagger21
Video Solution(1-16)
~~Hayabusa1
See Also
2022 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.