Difference between revisions of "2023 AIME I Problems/Problem 15"
(→Solution) |
|||
Line 83: | Line 83: | ||
To facilitate efficient search, we apply the following criteria: | To facilitate efficient search, we apply the following criteria: | ||
+ | <math></math> | ||
\begin{enumerate} | \begin{enumerate} | ||
\item To satisfy (7) and <math>a^2 + b^2 < 1000</math>, we have <math>1 \leq b \leq 15</math>. | \item To satisfy (7) and <math>a^2 + b^2 < 1000</math>, we have <math>1 \leq b \leq 15</math>. | ||
Line 131: | Line 132: | ||
\item For the remaining search, given <math>b</math>, we only search for <math>a \geq \sqrt{349 - b^2}</math>. | \item For the remaining search, given <math>b</math>, we only search for <math>a \geq \sqrt{349 - b^2}</math>. | ||
\end{enumerate} | \end{enumerate} | ||
+ | <math></math> | ||
Following the above search criteria, we find the final answer as <math>b = 5</math> and <math>a = 18</math>. | Following the above search criteria, we find the final answer as <math>b = 5</math> and <math>a = 18</math>. |
Revision as of 12:31, 8 February 2023
Problem 15
Find the largest prime number for which there exists a complex number satisfying
- the real and imaginary parts of are integers;
- , and
- there exists a triangle with side lengths , the real part of , and the imaginary part of .
Answer: 349
Suppose ; notice that , so by De Moivre’s theorem and . Now just try pairs going down from , writing down the value of on the right; and eventually we arrive at the first time is prime. Therefore, .
Solution
Denote . Thus, .
Thus,
Because , , are three sides of a triangle, we have and . Thus,
Because , , are three sides of a triangle, we have the following triangle inequalities:
We notice that , and , , and form a right triangle. Thus, . Because , . Therefore, (3) holds.
Conditions (4) and (5) can be written in the joint form as
We have
and .
Thus, (5) can be written as
Therefore, we need to jointly solve (1), (2), (6). From (1) and (2), we have either , or . In (6), by symmetry, without loss of generality, we assume .
Thus, (1) and (2) are reduced to
Let . Plugging this into (6), we get
Because is a prime, and are relatively prime.
Therefore, we can use (7), (8), , and and are relatively prime to solve the problem.
To facilitate efficient search, we apply the following criteria: $$ (Error compiling LaTeX. Unknown error_msg) \begin{enumerate} \item To satisfy (7) and , we have . In the outer layer, we search for in a decreasing order. In the inner layer, for each given , we search for . \item Given , we search for in the range . \item We can prove that for , there is no feasible . The proof is as follows.
For , to satisfy , we have . Thus, . Thus, the R.H.S. of (8) has the following upper bound
Hence, to satisfy (8), a necessary condition is
However, this cannot be satisfied for . Therefore, there is no feasible solution for . Therefore, we only need to consider .
\item We eliminate that are not relatively prime to .
\item We use the following criteria to quickly eliminate that make a composite number. \begin{enumerate} \item For , we eliminate satisfying . \item For (resp. ), we eliminate satisfying (resp. ). \end{enumerate}
\item For the remaining , check whether (8) and the condition that is prime are both satisfied.
The first feasible solution is and . Thus, .
\item For the remaining search, given , we only search for . \end{enumerate} $$ (Error compiling LaTeX. Unknown error_msg)
Following the above search criteria, we find the final answer as and . Thus, the largest prime is .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)