Difference between revisions of "Van Aubel's Theorem"
m (→Theorem) |
(→Proof 1: Complex Numbers) |
||
Line 6: | Line 6: | ||
== Proof 1: Complex Numbers== | == Proof 1: Complex Numbers== | ||
+ | [asy] | ||
+ | size(220); | ||
+ | import TrigMacros; | ||
+ | rr_cartesian_axes(-3,8,-2,8,complexplane=true,usegrid = false); | ||
+ | pair U, V, WW, Z, O, P, Q, R, SS; | ||
+ | O = (0,0) ; | ||
+ | A = (2,1.5); | ||
+ | B= (4,1.8); | ||
+ | C = (5.3,3); | ||
+ | D= (3,5.3); | ||
+ | |||
+ | draw(A--B--C--D--cycle); | ||
+ | draw(A--(A + rotate(-90)*(B-A))--(B + rotate(90)*(A-B))--B); | ||
+ | draw(B--(B + rotate(-90)*(C-B))--(C + rotate(90)*(B-C))--C); | ||
+ | draw(C--(C + rotate(-90)*(D-C))--(D + rotate(90)*(C-D))--D); | ||
+ | draw(D--(D + rotate(-90)*(A-D))--(A + rotate(90)*(D-A))--D); | ||
+ | |||
+ | P = (B + (A + rotate(-90)*(B-A)))/2; | ||
+ | Q = (C + (B + rotate(-90)*(C-B)))/2; | ||
+ | R = (D + (C + rotate(-90)*(D-C)))/2; | ||
+ | SS = (A + (D + rotate(-90)*(A-D)))/2; | ||
+ | |||
+ | //draw(WW--Y,red); | ||
+ | //draw(X--Z,blue); | ||
+ | dot("<math>a</math>",U,SW); | ||
+ | dot("<math>b</math>",V,2*E); | ||
+ | dot("<math>c</math>",WW,E); | ||
+ | dot("<math>d</math>",Z,NNW); | ||
+ | |||
+ | dot("<math>p</math>",P,E); | ||
+ | dot("<math>q</math>",Q,S); | ||
+ | dot("<math>r</math>",R,N); | ||
+ | dot("<math>s</math>",SS,S); | ||
+ | [/asy] | ||
Putting the diagram on the complex plane, let any point <math>X</math> be represented by the complex number <math>x</math>. Note that <math>\angle PAB = \frac{\pi}{4}</math> and that <math>PA = \frac{\sqrt{2}}{2}AB</math>, and similarly for the other sides of the quadrilateral. Then we have | Putting the diagram on the complex plane, let any point <math>X</math> be represented by the complex number <math>x</math>. Note that <math>\angle PAB = \frac{\pi}{4}</math> and that <math>PA = \frac{\sqrt{2}}{2}AB</math>, and similarly for the other sides of the quadrilateral. Then we have | ||
Line 28: | Line 62: | ||
Finally, we have <math>(p-r) = i(q-s) = e^{i \pi/2}(q-r)</math>, which implies <math>PR = QS</math> and <math>PR \perp QS</math>, as desired. | Finally, we have <math>(p-r) = i(q-s) = e^{i \pi/2}(q-r)</math>, which implies <math>PR = QS</math> and <math>PR \perp QS</math>, as desired. | ||
+ | |||
==See Also== | ==See Also== | ||
[[Category:Theorems]] | [[Category:Theorems]] |
Revision as of 12:55, 4 March 2023
Theorem
On each side of quadrilateral , construct an external square and its center: , , , ; yielding centers . Van Aubel's Theorem states that the two line segments connecting opposite centers are perpendicular and equal length: , and .
Proofs
Proof 1: Complex Numbers
[asy] size(220); import TrigMacros; rr_cartesian_axes(-3,8,-2,8,complexplane=true,usegrid = false); pair U, V, WW, Z, O, P, Q, R, SS; O = (0,0) ; A = (2,1.5); B= (4,1.8); C = (5.3,3); D= (3,5.3);
draw(A--B--C--D--cycle); draw(A--(A + rotate(-90)*(B-A))--(B + rotate(90)*(A-B))--B); draw(B--(B + rotate(-90)*(C-B))--(C + rotate(90)*(B-C))--C); draw(C--(C + rotate(-90)*(D-C))--(D + rotate(90)*(C-D))--D); draw(D--(D + rotate(-90)*(A-D))--(A + rotate(90)*(D-A))--D);
P = (B + (A + rotate(-90)*(B-A)))/2; Q = (C + (B + rotate(-90)*(C-B)))/2; R = (D + (C + rotate(-90)*(D-C)))/2; SS = (A + (D + rotate(-90)*(A-D)))/2;
//draw(WW--Y,red); //draw(X--Z,blue); dot("",U,SW); dot("",V,2*E); dot("",WW,E); dot("",Z,NNW);
dot("",P,E); dot("",Q,S); dot("",R,N); dot("",SS,S); [/asy] Putting the diagram on the complex plane, let any point be represented by the complex number . Note that and that , and similarly for the other sides of the quadrilateral. Then we have
From this, we find that Similarly,
Finally, we have , which implies and , as desired.