Difference between revisions of "2002 AIME II Problems/Problem 2"

(wrong problem...?)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
<math>PQ=\sqrt{(8-7)^2+(8-12)^2+(1-10)^2}=\sqrt{98}</math>
 +
 
 +
<math>PR=\sqrt{(11-7)^2+(3-12)^2+(9-10)^2}=\sqrt{98}</math>
 +
 
 +
<math>QR=\sqrt{(11-8)^2+(3-8)^2+(9-1)^2}=\sqrt{98}</math>
 +
 
 +
So, PQR is an equilateral triangle. Let the side of the cube is <math>a</math>.
 +
<math>a\sqrt{2}=\sqrt{98}</math>
 +
 
 +
So, <math>a=7</math>, and hence the surface area=<math>6a^2=294</math>.
 
== See also ==
 
== See also ==
 
* [[2002 AIME II Problems/Problem 1 | Previous problem]]
 
* [[2002 AIME II Problems/Problem 1 | Previous problem]]
 
* [[2002 AIME II Problems/Problem 3 | Next problem]]
 
* [[2002 AIME II Problems/Problem 3 | Next problem]]
 
* [[2002 AIME II Problems]]
 
* [[2002 AIME II Problems]]

Revision as of 11:31, 28 December 2007

Problem

Three vertices of a cube are $P=(7,12,10)$, $Q=(8,8,1)$, and $R=(11,3,9)$. What is the surface area of the cube?

Solution

$PQ=\sqrt{(8-7)^2+(8-12)^2+(1-10)^2}=\sqrt{98}$

$PR=\sqrt{(11-7)^2+(3-12)^2+(9-10)^2}=\sqrt{98}$

$QR=\sqrt{(11-8)^2+(3-8)^2+(9-1)^2}=\sqrt{98}$

So, PQR is an equilateral triangle. Let the side of the cube is $a$. $a\sqrt{2}=\sqrt{98}$

So, $a=7$, and hence the surface area=$6a^2=294$.

See also