Difference between revisions of "2023 USAJMO Problems/Problem 2"
(→Solution 3) |
m |
||
Line 65: | Line 65: | ||
~KevinYang2.71 | ~KevinYang2.71 | ||
+ | |||
+ | ==See Also== | ||
+ | {{USAJMO newbox|year=2023|num-b=1|num-a=3}} | ||
+ | {{MAA Notice}} |
Revision as of 17:58, 6 October 2023
Problem
(Holden Mui) In an acute triangle , let be the midpoint of . Let be the foot of the perpendicular from to . Suppose that the circumcircle of triangle intersects line at two distinct points and . Let be the midpoint of . Prove that .
Solution 1
The condition is solved only if is isosceles, which in turn only happens if is perpendicular to .
Now, draw the altitude from to , and call that point . Because of the Midline Theorem, the only way that this condition is met is if , or if .
By similarity, . Using similarity ratios, we get that . Rearranging, we get that . This implies that is cyclic.
Now we start using Power of a Point. We get that , and from before. This leads us to get that .
Now we assign variables to the values of the segments. Let and . The equation from above gets us that . As from the problem statements, this gets us that and , and we are done.
-dragoon and rhydon516 (:
Solution 2
Let be the foot of the altitude from onto . We want to show that for obvious reasons.
Notice that is cyclic and that lies on the radical axis of and . By Power of a Point, . As , we have , as desired.
- Leo.Euler
Solution 3
We are going to use barycentric coordinates on . Let , , , and , , . We have and so and . Since , it follows that Solving this gives so The equation for is Plugging in and gives . Plugging in gives so Now let where so . It follows that . It suffices to prove that . Setting , we get . Furthermore we have so it suffices to prove that which is valid.
~KevinYang2.71
See Also
2023 USAJMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.