Difference between revisions of "2023 IMO Problems/Problem 1"
Line 9: | Line 9: | ||
If <math>a\geq 2</math>, the condition fails. This is because <math>p^{a-1} \nmid p^a + q</math>, since <math>p^a</math> is divisible by <math>p^{a-1}</math>, but <math>q</math> is not since it is a prime different from <math>p</math>. If <math>a=1</math>, then <math>p^{a-1}=p^0=1</math>, which does divide <math>q</math>. Therefore <math>a</math> must equal <math>1</math> for the condition to be satisfied in this case. However, we know that the ordered list of divisors satisfies <math>d_i \cdot d_{k+1-i}=n</math>, meaning since the first <math>3</math> divisors are <math>(1, p, q)</math>, then the last <math>3</math> divisors are <math>(\frac{n}{q}, \frac{n}{p}, n)</math>, so <math>(\frac{n}{q})</math> must divide <math>(\frac{n}{p} + n)</math>. The fraction <math>\frac{(\frac{n}{p} + n)}{(\frac{n}{q})} = \frac{(\frac{1}{p} + 1)}{(\frac{1}{q})} = (\frac{q}{p}) + q</math> which is clearly not an integer since <math>q</math> is an integer, but <math>\frac{q}{p}</math> is not an integer, so <math>(\frac{q}{p}) + q</math> is not an integer. Therefore the condition fails specifically for the final <math>3</math> divisors in the list in this case, meaning <math>n</math> can never have <math>2</math> or more prime divisors. | If <math>a\geq 2</math>, the condition fails. This is because <math>p^{a-1} \nmid p^a + q</math>, since <math>p^a</math> is divisible by <math>p^{a-1}</math>, but <math>q</math> is not since it is a prime different from <math>p</math>. If <math>a=1</math>, then <math>p^{a-1}=p^0=1</math>, which does divide <math>q</math>. Therefore <math>a</math> must equal <math>1</math> for the condition to be satisfied in this case. However, we know that the ordered list of divisors satisfies <math>d_i \cdot d_{k+1-i}=n</math>, meaning since the first <math>3</math> divisors are <math>(1, p, q)</math>, then the last <math>3</math> divisors are <math>(\frac{n}{q}, \frac{n}{p}, n)</math>, so <math>(\frac{n}{q})</math> must divide <math>(\frac{n}{p} + n)</math>. The fraction <math>\frac{(\frac{n}{p} + n)}{(\frac{n}{q})} = \frac{(\frac{1}{p} + 1)}{(\frac{1}{q})} = (\frac{q}{p}) + q</math> which is clearly not an integer since <math>q</math> is an integer, but <math>\frac{q}{p}</math> is not an integer, so <math>(\frac{q}{p}) + q</math> is not an integer. Therefore the condition fails specifically for the final <math>3</math> divisors in the list in this case, meaning <math>n</math> can never have <math>2</math> or more prime divisors. | ||
− | When <math>n=p^x</math>, it is easy to verify this works for all primes <math>p</math> and all <math>x\geq 1</math>, since <math>p^y \vert p^{y+1} + p^{y+2}</math>, and the divisors are ordered as <math>{1,\, p,\, p^2…\, p^x}</math> | + | When <math>n=p^x</math>, it is easy to verify this works for all primes <math>p</math> and all <math>x\geq 1</math>, since <math>p^y \vert p^{y+1} + p^{y+2}</math>, and the divisors are ordered as <math>{1,\, p,\, p^2…\, p^x}</math>. |
~SpencerD. | ~SpencerD. |
Revision as of 12:12, 15 July 2023
Problem
Determine all composite integers that satisfy the following property: if are all the positive divisors of with , then divides for every .
Solution 1
If has at least prime divisors, WLOG let be the smallest two of these primes. Then the ordered tuple of divisors is of the form for some integer .
To prove this claim, note that is the smallest prime that divides , so it is the smallest divisor not equal to , meaning the first divisors are and . Furthermore, the smallest divisor of that is not equal to a power of (i.e. not equal to is equal to . This is because all other divisors either include a prime different from both and , which is larger than (since and are the smallest two prime divisors of ), or don’t include a different prime . In the first case, since , the divisor is larger than . In the second case, all divisors divisible by are also larger than , and otherwise are of the form or for some nonnegative integer . If the divisor is of the form , then it is a power of . If it is of the form , the smallest of these factors is . Therefore, (in the case where or more primes divide ) the ordered tuple of divisors is of the form for some integer , since after each divisor , the next smallest divisor is either or simply .
If , the condition fails. This is because , since is divisible by , but is not since it is a prime different from . If , then , which does divide . Therefore must equal for the condition to be satisfied in this case. However, we know that the ordered list of divisors satisfies , meaning since the first divisors are , then the last divisors are , so must divide . The fraction which is clearly not an integer since is an integer, but is not an integer, so is not an integer. Therefore the condition fails specifically for the final divisors in the list in this case, meaning can never have or more prime divisors.
When , it is easy to verify this works for all primes and all , since , and the divisors are ordered as .
~SpencerD.
Video Solution
https://www.youtube.com/watch?v=JhThDz0H7cI [Video contains solutions to all day 1 problems]