Difference between revisions of "Angle addition identities"

Line 2: Line 2:
  
 
<math>\sin(x + y) = \sin (x) \cos (y) + \cos (x) \sin (y)</math>
 
<math>\sin(x + y) = \sin (x) \cos (y) + \cos (x) \sin (y)</math>
 +
 
<math>\cos(x + y) = \cos (x) \cos (y) - \sin (x) \sin (y)</math>
 
<math>\cos(x + y) = \cos (x) \cos (y) - \sin (x) \sin (y)</math>
 +
 
<math>\tan(x + y) = \frac{\tan (x) + \tan (y)}{1 - \tan (x) \tan (y)}</math>
 
<math>\tan(x + y) = \frac{\tan (x) + \tan (y)}{1 - \tan (x) \tan (y)}</math>
  
 
{{stub}}
 
{{stub}}
 +
 +
==Proofs==
 +
 +
<asy>
 +
unitsize(216);
 +
pair O = (0,0);
 +
pair A = (cos(radians(20)),0);
 +
pair B = (cos(radians(20)),sin(radians(20)));
 +
pair C = (cos(radians(20)),sin(radians(55)));
 +
pair D = ((cos(radians(55))*sin(radians(35))),(sin(radians(55))*sin(radians(35))));
 +
draw(O--A--B--O--D--B--O--D--C--B);
 +
dot(O);
 +
dot(B);
 +
dot(A,red);
 +
dot(C,green);
 +
dot(D,blue);
 +
label("O",O,SW);
 +
label("$\alpha$",shift(dir(10)/5)*O);
 +
label("$\beta$",shift(dir(37.5)/5)*O);
 +
label("A",A,SE,red);
 +
label("B",B,E);
 +
label("C",C,NE,green);
 +
label("D",D,dir(122.5),blue);
 +
label("$\cos \alpha$",O--A,S);
 +
label("$\sin \alpha$",A--B,E);
 +
label("1",O--B,dir(302.5));
 +
label("$\frac{\cos \alpha \sin \beta}{\cos \beta}$",B--C,E);
 +
label("$\frac{\sin \alpha \sin \beta}{\cos \beta}$",C--D,N);
 +
label("$\frac{\sin \alpha \sin \beta}{\cos \beta}$",B--D,dir();
 +
</asy>
  
 
==See Also==
 
==See Also==
 
* [[Trigonometric identities]]
 
* [[Trigonometric identities]]

Revision as of 19:24, 13 January 2024

The trigonometric angle addition identities state the following identities:

$\sin(x + y) = \sin (x) \cos (y) + \cos (x) \sin (y)$

$\cos(x + y) = \cos (x) \cos (y) - \sin (x) \sin (y)$

$\tan(x + y) = \frac{\tan (x) + \tan (y)}{1 - \tan (x) \tan (y)}$

This article is a stub. Help us out by expanding it.

Proofs

unitsize(216);
pair O = (0,0);
pair A = (cos(radians(20)),0);
pair B = (cos(radians(20)),sin(radians(20)));
pair C = (cos(radians(20)),sin(radians(55)));
pair D = ((cos(radians(55))*sin(radians(35))),(sin(radians(55))*sin(radians(35))));
draw(O--A--B--O--D--B--O--D--C--B);
dot(O);
dot(B);
dot(A,red);
dot(C,green);
dot(D,blue);
label("O",O,SW);
label("$\alpha$",shift(dir(10)/5)*O);
label("$\beta$",shift(dir(37.5)/5)*O);
label("A",A,SE,red);
label("B",B,E);
label("C",C,NE,green);
label("D",D,dir(122.5),blue);
label("$\cos \alpha$",O--A,S);
label("$\sin \alpha$",A--B,E);
label("1",O--B,dir(302.5));
label("$\frac{\cos \alpha \sin \beta}{\cos \beta}$",B--C,E);
label("$\frac{\sin \alpha \sin \beta}{\cos \beta}$",C--D,N);
label("$\frac{\sin \alpha \sin \beta}{\cos \beta}$",B--D,dir();
 (Error making remote request. Unknown error_msg)

See Also