Difference between revisions of "1999 IMO Problems/Problem 1"

(Solution)
(Solution)
Line 42: Line 42:
  
 
This means that the perpendicular bisector also passes through a point <math>P_{k}</math> of <math>S</math>
 
This means that the perpendicular bisector also passes through a point <math>P_{k}</math> of <math>S</math>
 +
 +
Let <math>c</math> be any positive integer
 +
 +
<math>\angle P_{k}OP_{(k+c)\; mod\; n}=\frac{2\pi}{n}\left( (k+c-k)\; mod\; n \right)=\frac{2\pi}{n}\left( c\; mod\; n \right)</math>
 +
 +
and
 +
 +
<math>\angle P_{k}OP_{(k-c)\; mod\; n}=\frac{2\pi}{n}\left( (k-(k-c))\; mod\; n \right)=\frac{2\pi}{n}\left( c\; mod\; n \right)</math>
 +
 +
Therefore, <math>\angle P_{k}OP_{(k+c)\; mod\; n}=\angle P_{k}OP_{(k-c)\; mod\; n}</math> for any integer <math>c</math>.
 +
 +
Also, since <math>\left| OP_{(k+c)\; mod\; n} \right|=\left| OP_{(k-c)\; mod\; n} \right|=R</math> for any integer <math>c</math>
 +
 +
then this proves that the bisector of any points <math>A</math> and <math>B</math> is an axis of symmetry.
 +
 +
CASE II: <math>a+b</math> is odd
 +
 +
<math>k=\frac{a+b+1}{2}</math> and <math>k</math> is integer
 +
 +
<math>m=\frac{a+b-1}{2}</math> and <math>m</math> is integer
 +
 +
Then <math>M_{AB}=\left\langle Rcos\left( \frac{2\pi}{n}frac{a+b}{2} \right),Rsin\left( \frac{2\pi}{n}frac{a+b}{2} \right) \right\rangle</math>
 +
 +
This means that the perpendicular bisector does not pass through any point of <math>S</math>, but their closest points are
  
 
Let <math>c</math> be any positive integer
 
Let <math>c</math> be any positive integer

Revision as of 20:08, 12 November 2023

Problem

Determine all finite sets $S$ of at least three points in the plane which satisfy the following condition:

For any two distinct points $A$ and $B$ in $S$, the perpendicular bisector of the line segment $AB$ is an axis of symmetry of $S$.

Solution

Upon reading this problem and drawing some points, one quickly realizes that the set $S$ consists of all the vertices of any regular polygon.

Now to prove it with some numbers:

Let $S=\left\{ P_{0},P_{1},P_{2},...,P_{n-1} \right\}$, with $n\ge 3$, where $P_{i}$ is a vertex of a polygon which we can define their $xy$ coordinates as: $P_{i}=\left\langle Rcos\left( \frac{2\pi}{n}i \right),Rsin\left( \frac{2\pi}{n}i \right) \right\rangle$ for $i=0,1,2,...,(n-1)$.

That defines the vertices of any regular polygon with $R$ being the radius of the circumcircle of the regular $n$-sided polygon.

Now we can pick any points $A$ and $B$ of the set as:

$A=P_{a}$ and $B=P_{b}$, where $a=0,1,2,...,(n-1)$; $b=0,1,2,...,(n-1)$; and $a\ne b$

Then,

$A=\left\langle Rcos\left( \frac{2\pi}{n}a \right),Rsin\left( \frac{2\pi}{n}a \right) \right\rangle$

and $B=\left\langle Rcos\left( \frac{2\pi}{n}b \right),Rsin\left( \frac{2\pi}{n}b \right) \right\rangle$

Let $O$ be point $(0,0)$ which is not part of $S$

Then, $\angle P_{0}OA = \frac{2\pi}{n}a$, and $\angle P_{0}OB = \frac{2\pi}{n}b$

The perpendicular bisector of $AB$ passes through $O$.

Let point $M_{AB}$, not in $S$ be a point that passes through the perpendicular bisector of $AB$ at a distance $R$ from $O$

Then, $\angle P_{0}OM_{AB} =\frac{2\pi}{n}\frac{a+b}{2}$ and $M_{AB}=\left\langle Rcos\left( \frac{2\pi}{n}\frac{a+b}{2} \right),Rsin\left( \frac{2\pi}{n}\frac{a+b}{2} \right) \right\rangle$

CASE I: $a+b$ is even

$k=\frac{a+b}{2}$ and $k$ is integer

Then $M_{AB}=\left\langle Rcos\left( \frac{2\pi}{n}k \right),Rsin\left( \frac{2\pi}{n}k \right) \right\rangle=P_{k}$

This means that the perpendicular bisector also passes through a point $P_{k}$ of $S$

Let $c$ be any positive integer

$\angle P_{k}OP_{(k+c)\; mod\; n}=\frac{2\pi}{n}\left( (k+c-k)\; mod\; n \right)=\frac{2\pi}{n}\left( c\; mod\; n \right)$

and

$\angle P_{k}OP_{(k-c)\; mod\; n}=\frac{2\pi}{n}\left( (k-(k-c))\; mod\; n \right)=\frac{2\pi}{n}\left( c\; mod\; n \right)$

Therefore, $\angle P_{k}OP_{(k+c)\; mod\; n}=\angle P_{k}OP_{(k-c)\; mod\; n}$ for any integer $c$.

Also, since $\left| OP_{(k+c)\; mod\; n} \right|=\left| OP_{(k-c)\; mod\; n} \right|=R$ for any integer $c$

then this proves that the bisector of any points $A$ and $B$ is an axis of symmetry.

CASE II: $a+b$ is odd

$k=\frac{a+b+1}{2}$ and $k$ is integer

$m=\frac{a+b-1}{2}$ and $m$ is integer

Then $M_{AB}=\left\langle Rcos\left( \frac{2\pi}{n}frac{a+b}{2} \right),Rsin\left( \frac{2\pi}{n}frac{a+b}{2} \right) \right\rangle$

This means that the perpendicular bisector does not pass through any point of $S$, but their closest points are

Let $c$ be any positive integer

$\angle P_{k}OP_{(k+c)\; mod\; n}=\frac{2\pi}{n}\left( (k+c-k)\; mod\; n \right)=\frac{2\pi}{n}\left( c\; mod\; n \right)$

and

$\angle P_{k}OP_{(k-c)\; mod\; n}=\frac{2\pi}{n}\left( (k-(k-c))\; mod\; n \right)=\frac{2\pi}{n}\left( c\; mod\; n \right)$

Therefore, $\angle P_{k}OP_{(k+c)\; mod\; n}=\angle P_{k}OP_{(k-c)\; mod\; n}$ for any integer $c$.

Also, since $\left| OP_{(k+c)\; mod\; n} \right|=\left| OP_{(k-c)\; mod\; n} \right|=R$ for any integer $c$

then this proves that the bisector of any points $A$ and $B$ is an axis of symmetry.

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.