|
|
Line 5: |
Line 5: |
| <math>\textbf{(A)}~4-\sqrt{5}\qquad\textbf{(B)}~\sqrt{5}-1\qquad\textbf{(C)}~8-3\sqrt{5}\qquad\textbf{(D)}~\frac{\sqrt{5}+1}{2}\qquad\textbf{(E)}~\frac{2+\sqrt{5}}{3}</math> | | <math>\textbf{(A)}~4-\sqrt{5}\qquad\textbf{(B)}~\sqrt{5}-1\qquad\textbf{(C)}~8-3\sqrt{5}\qquad\textbf{(D)}~\frac{\sqrt{5}+1}{2}\qquad\textbf{(E)}~\frac{2+\sqrt{5}}{3}</math> |
| | | |
− | ==Solution==
| |
| | | |
− | Denote the distance from the center to one vertex of the pentagon be <math>a</math>.
| + | ==Solution 1== |
− | The two pentagons are similar, thus the new pentagon's area could be calculated using the similarity ratio.
| |
− | The similarity ratio could be expressed as the ratio between the distance from the center to one of the sides.
| |
| | | |
− | <cmath>
| + | [[File:Pentagon_2023_12B_Q25_dissmo.png]] |
− | \begin{align*}
| |
− | ratio &= \frac{\frac{1}{2}d}{\cos36^\circ d} \\
| |
− | &= \frac{1}{2\cos36^\circ}
| |
− | \end{align*}
| |
− | </cmath>
| |
− | | |
− | Therefore, our area ratio is <math>\frac{1}{4\cos^236^\circ}</math>. Due to the golden ratio, <math>\cos36^\circ=\frac{1+\sqrt5}{4}</math>.
| |
− | | |
− | Our area would be
| |
− | | |
− | <cmath>
| |
− | \begin{align*}
| |
− | A&=(\sqrt5+1)\cdot\frac{1}{4(\frac{1+\sqrt5}{4})^2}\\
| |
− | &=(\sqrt5+1)\cdot\frac{4}{(1+\sqrt5)^2}\\
| |
− | &=\frac{4}{\sqrt5+1}\\
| |
− | &=\boxed{\textbf{(B)}~\sqrt{5}-1}
| |
− | \end{align*}
| |
− | </cmath>
| |
− | | |
− | ~Solution by eric-z
| |
− | | |
− | ==See Also==
| |
− | {{AMC12 box|year=2023|ab=B|num-b=24|after=Last Problem}}
| |
− | {{MAA Notice}}
| |
Revision as of 19:37, 15 November 2023
Problem
A regular pentagon with area is printed on paper and cut out. The five vertices of the pentagon are folded into the center of the pentagon, creating a smaller pentagon. What is the area of the new pentagon?
Solution 1