Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 8"
(Created page with "==Problem== A sequence of positive reals defined by <math>a_0=x</math>, <math>a_1=y</math>, and <math>a_n\cdot a_{n+2}=a_{n+1}</math> for all integers <math>n\ge 0</math>. Gi...") |
|||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | {{ | + | |
+ | <math>a_0=x</math> | ||
+ | |||
+ | <math>a_1=y</math> | ||
+ | |||
+ | <math>a_2=\frac{a_1}{a_0}=\frac{y}{x}</math> | ||
+ | |||
+ | <math>a_3=\frac{a_2}{a_1}=\frac{\frac{y}{x}}{y}=\frac{y}{x}</math> | ||
+ | |||
+ | |||
+ | |||
+ | ~Tomas Diaz. orders@tomasdiaz.com | ||
+ | {{alternate solutions}} |
Revision as of 16:49, 26 November 2023
Problem
A sequence of positive reals defined by , , and for all integers . Given that and , find .
Solution
~Tomas Diaz. orders@tomasdiaz.com Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.