Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 8"

(Created page with "==Problem== A sequence of positive reals defined by <math>a_0=x</math>, <math>a_1=y</math>, and <math>a_n\cdot a_{n+2}=a_{n+1}</math> for all integers <math>n\ge 0</math>. Gi...")
 
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
{{Solution}}
+
 
 +
<math>a_0=x</math>
 +
 
 +
<math>a_1=y</math>
 +
 
 +
<math>a_2=\frac{a_1}{a_0}=\frac{y}{x}</math>
 +
 
 +
<math>a_3=\frac{a_2}{a_1}=\frac{\frac{y}{x}}{y}=\frac{y}{x}</math>
 +
 
 +
 
 +
 
 +
~Tomas Diaz. orders@tomasdiaz.com
 +
{{alternate solutions}}

Revision as of 16:49, 26 November 2023

Problem

A sequence of positive reals defined by $a_0=x$, $a_1=y$, and $a_n\cdot a_{n+2}=a_{n+1}$ for all integers $n\ge 0$. Given that $a_{2007}+a_{2008}=3$ and $a_{2007}\cdot a_{2008}=\frac 13$, find $x^3+y^3$.

Solution

$a_0=x$

$a_1=y$

$a_2=\frac{a_1}{a_0}=\frac{y}{x}$

$a_3=\frac{a_2}{a_1}=\frac{\frac{y}{x}}{y}=\frac{y}{x}$


~Tomas Diaz. orders@tomasdiaz.com Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.