Difference between revisions of "Bisector"
(Created page with "==Division of bisector== Let a triangle <math>\triangle ABC, BC = a, AC = b, AB = c</math> be given. Let <math>AA', BB',</math> and <math>CC'</math> be the bisectors of <math>...") |
(→Division of bisector) |
||
Line 1: | Line 1: | ||
==Division of bisector== | ==Division of bisector== | ||
− | Let a triangle <math>\triangle ABC, BC = a, AC = b, AB = c</math> be given. | + | [[File:Bisector division.png|350px|right]] |
+ | Let a triangle <math>\triangle ABC, BC = a, AC = b, AB = c</math> be given. | ||
− | Find < | + | Let <math>AA', BB',</math> and <math>CC'</math> be the bisectors of <math>\triangle ABC.</math> |
+ | |||
+ | he segments <math>BB'</math> and <math>A'C'</math> meet at point <math>D.</math> Find <cmath>\frac {BI}{BB'}, \frac {BD}{BB'}, \frac {DA'}{DC'}.</cmath> | ||
<i><b>Solution</b></i> | <i><b>Solution</b></i> | ||
− | < | + | <cmath>\frac {BA'}{CA'} = \frac {BA}{CA} = \frac {c}{b}, BA' + CA' = BC = a \implies BA' = \frac {a \cdot c}{b+c}.</cmath> |
Similarly <math>BC' = \frac {a \cdot c}{a+b}, B'C = \frac {a \cdot b}{a+b}. </math> | Similarly <math>BC' = \frac {a \cdot c}{a+b}, B'C = \frac {a \cdot b}{a+b}. </math> | ||
<cmath>\frac {BI}{IB'} = \frac {a}{B'C} = \frac{a+c}{b} \implies \frac {BI}{BB'} = \frac {a+c}{a + b +c}.</cmath> | <cmath>\frac {BI}{IB'} = \frac {a}{B'C} = \frac{a+c}{b} \implies \frac {BI}{BB'} = \frac {a+c}{a + b +c}.</cmath> | ||
+ | |||
+ | <cmath> \frac {DA'}{DC'} = \frac {BA'}{BC'} = \frac {a+ b}{b +c}.</cmath> | ||
Denote <math>\angle ABC = 2 \beta.</math> | Denote <math>\angle ABC = 2 \beta.</math> | ||
Line 16: | Line 21: | ||
Bisector <math>BD = 2 \frac {BC' \cdot BA'}{BC' + BA'} \cos \beta \implies</math> | Bisector <math>BD = 2 \frac {BC' \cdot BA'}{BC' + BA'} \cos \beta \implies</math> | ||
<cmath>\frac {BD}{BB'} = \frac{a+c}{a+2b+c}.</cmath> | <cmath>\frac {BD}{BB'} = \frac{a+c}{a+2b+c}.</cmath> | ||
− | + | '''vladimir.shelomovskii@gmail.com, vvsss''' | |
− |