Difference between revisions of "1992 OIM Problems/Problem 3"

Line 41: Line 41:
 
<math>P_x</math> and <math>P_y</math> cancels in the above equation. So,
 
<math>P_x</math> and <math>P_y</math> cancels in the above equation. So,
  
<math>a^2+b^2+c^2=\frac{15}{3}=5</math>
+
<math>a^2+b^2+c^2=\frac{15}{3}=5</math> Proving proves part a.
  
This proves part a.
+
Part b.
  
Part b.
+
Using Heron's formula:
  
 +
<math>A=\sqrt{\left( \frac{a+b+c}{2} \right)\left( \frac{a+b+c}{2} -a\right)\left( \frac{a+b+c}{2} -b\right)\left( \frac{a+b+c}{2} -c\right)}</math>
  
 +
<math>4A=\sqrt{\left( a+b+c \right)\left( a+b-c \right)\left( a-b+c \right)\left( -a+b+c \right)}</math>
  
  

Revision as of 20:53, 14 December 2023

Problem

In an equilateral triangle $ABC$ whose side has length 2, the circle $G$ is inscribed.

a. Show that for every point $P$ of $G$, the sum of the squares of its distances to the vertices $A$, $B$ and $C$ is 5.

b. Show that for every point $P$ in $G$ it is possible to construct a triangle whose sides have the lengths of the segments $AP$, $BP$ and $CP$, and that its area is:

\[\frac{\sqrt{3}}{4}\]

~translated into English by Tomas Diaz. ~orders@tomasdiaz.com


Solution

1992 OIM P3.png

Construct the triangle in the cartesian plane as shown above with the shown vertices coordinates.

Point $P$ coordinates is $(P_x,P_y)$ and $P_x^2+P_y^2=r^2=\left( \frac{1}{\sqrt{3}} \right)^2=\frac{1}{3}$

Let $a, b, c$ be the distances from the vertices to point $P$.

Part a.

$a^2=(P_x-1)^2+\left( P_y-\frac{1}{\sqrt{3})} \right)^2=P_x^2+P_y^2-2P_x+\frac{2}{\sqrt{3}}P_y+\frac{4}{3}$

Since $P_x^2+P_y^2=\frac{1}{3}$,

$a^2=-2P_x+\frac{2}{\sqrt{3}}P_y+\frac{5}{3}$

$b^2=(P_x-1)^2+\left( P_y+\frac{1}{\sqrt{3})} \right)^2=P_x^2+P_y^2+2P_x+\frac{2}{\sqrt{3}}P_y+\frac{4}{3}$

$b^2=2P_x+\frac{2}{\sqrt{3}}P_y+\frac{5}{3}$

$c^2=P_x^2+\left( P_y-\frac{2}{\sqrt{3}} \right)^2=P_x^2+P_y^2-\frac{4}{\sqrt{3}}P_y+\frac{4}{3}$

$c^2=-\frac{4}{\sqrt{3}}P_y+\frac{5}{3}$

$a^2+b^2+c^2=-2P_x+\frac{2}{\sqrt{3}}P_y+\frac{5}{3}+2P_x+\frac{2}{\sqrt{3}}P_y+\frac{5}{3}-\frac{4}{\sqrt{3}}P_y+\frac{5}{3}$

$P_x$ and $P_y$ cancels in the above equation. So,

$a^2+b^2+c^2=\frac{15}{3}=5$ Proving proves part a.

Part b.

Using Heron's formula:

$A=\sqrt{\left( \frac{a+b+c}{2} \right)\left( \frac{a+b+c}{2} -a\right)\left( \frac{a+b+c}{2} -b\right)\left( \frac{a+b+c}{2} -c\right)}$

$4A=\sqrt{\left( a+b+c \right)\left( a+b-c \right)\left( a-b+c \right)\left( -a+b+c \right)}$


  • Note. I actually competed at this event in Venezuela when I was in High School representing Puerto Rico. I got full points for part a and partial points for part b. I don't remember what I did. I will try to write a solution for this one later.

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

https://www.oma.org.ar/enunciados/ibe7.htm