Difference between revisions of "2023 SSMO Accuracy Round Problems/Problem 6"

(Created page with "==Problem== Let the roots of <math>P(x) = x^3 - 2023x^2 + 2023^{2023}</math> be <math>p, q, r</math>. Find <cmath>\frac{p^2 + q^2}{p + q} + \frac{q^2 + r^2}{q + r} + \frac{r^2...")
 
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let the roots of <math>P(x) = x^3 - 2023x^2 + 2023^{2023}</math> be <math>p, q, r</math>.
+
Let the roots of <math>P(x) = x^3 - 2023x^2 + 2023^{2023}</math> be <math>\alpha, \beta, \gamma.</math>.
 
Find
 
Find
<cmath>\frac{p^2 + q^2}{p + q} + \frac{q^2 + r^2}{q + r} + \frac{r^2 + p^2}{r + p}</cmath>
+
<cmath>\frac{\alpha^2 + \beta^2}{\alpha + \beta} + \frac{\beta^2 + \gamma^2}{\beta+\gamma} + \frac{\gamma^2 + \alpha^2}{\gamma + \alpha}</cmath>
  
 
==Solution==
 
==Solution==

Revision as of 12:46, 23 December 2023

Problem

Let the roots of $P(x) = x^3 - 2023x^2 + 2023^{2023}$ be $\alpha, \beta, \gamma.$. Find \[\frac{\alpha^2 + \beta^2}{\alpha + \beta} + \frac{\beta^2 + \gamma^2}{\beta+\gamma} + \frac{\gamma^2 + \alpha^2}{\gamma + \alpha}\]

Solution