Difference between revisions of "2024 AIME I Problems/Problem 5"
Mathkiddie (talk | contribs) (Created blank page) |
Technodoggo (talk | contribs) |
||
Line 1: | Line 1: | ||
+ | We use simple geometry to solve this problem. | ||
+ | <asy> | ||
+ | import graph; | ||
+ | unitsize(0.1cm); | ||
+ | |||
+ | pair A = (0,0);pair B = (107,0);pair C = (107,16);pair D = (0,16);pair E = (3,16);pair F = (187,16);pair G = (187,33);pair H = (3,33); | ||
+ | label("$A$", A, SW);label("$B$", B, SE);label("$C$", C, N);label("$D$", D, NW);label("$E$", E, S);label("$F$", F, SE);label("$G$", G, NE);label("$H$", H, NW); | ||
+ | draw(E--D--A--B--C--E--H--G--F--C); | ||
+ | /*Diagram by Technodoggo*/ | ||
+ | </asy> | ||
+ | |||
+ | We are given that <math>A</math>, <math>D</math>, <math>H</math>, and <math>G</math> are concyclic; call the circle that they all pass through circle <math>\omega</math> with center <math>O</math>. We know that, given any chord on a circle, the perpendicular bisector to the chord passes through the center; thus, given two chords, taking the intersection of their perpendicular bisectors gives the center. We therefore consider chords <math>HG</math> and <math>AD</math> and take the midpoints of <math>HG</math> and <math>AD</math> to be <math>P</math> and <math>Q</math>, respectively. | ||
+ | |||
+ | <asy> | ||
+ | import graph; | ||
+ | unitsize(0.1cm); | ||
+ | |||
+ | pair A = (0,0);pair B = (107,0);pair C = (107,16);pair D = (0,16);pair E = (3,16);pair F = (187,16);pair G = (187,33);pair H = (3,33); | ||
+ | label("$A$", A, SW);label("$B$", B, SE);label("$C$", C, N);label("$D$", D, NW);label("$E$", E, S);label("$F$", F, SE);label("$G$", G, NE);label("$H$", H, NW); | ||
+ | draw(E--D--A--B--C--E--H--G--F--C); | ||
+ | |||
+ | pair P = (95, 33);pair Q = (0, 8); | ||
+ | dot(A);dot(B);dot(C);dot(D);dot(E);dot(F);dot(G);dot(H);dot(P);dot(Q); | ||
+ | label("$P$", P, N);label("$Q$", Q, W); | ||
+ | |||
+ | draw(Q--(107,8));draw(P--(95,0)); | ||
+ | pair O = (95,8); | ||
+ | dot(O);label("$O$", O, NW); | ||
+ | /*Diagram by Technodoggo*/ | ||
+ | </asy> | ||
+ | |||
+ | We could draw the circumcircle, but actually it does not matter for our solution; all that matters is that <math>OA=OH=r</math>, where <math>r</math> is the circumradius. | ||
+ | |||
+ | By the Pythagorean Theorem, <math>OQ^2+QA^2=OA^2</math>. Also, <math>OP^2+PH^2=OH^2</math>. We know that <math>OQ=DE+HP</math>, and <math>HP=\dfrac{184}2=92</math>; <math>QA=\dfrac{16}2=8</math>; <math>OP=DQ+HE=8+17=25</math>; and finally, <math>PH=92</math>. Let <math>DE=x</math>. We now know that <math>OA^2=(x+92)^2+8^2</math> and <math>OH^2=25^2+92^2</math>. Recall that <math>OA=OH</math>; thus, <math>OA^2=OH^2</math>. We solve for <math>x</math>: | ||
+ | |||
+ | \begin{align*} | ||
+ | (x+92)^2+8^2&=25^2+92^2 \\ | ||
+ | (x+92)^2&=625+(100-8)^2-8^2 \\ | ||
+ | &=625+10000-1600+64-64 \\ | ||
+ | &=9025 \\ | ||
+ | x+92&=95 \\ | ||
+ | x&=3. \\ | ||
+ | \end{align*} | ||
+ | |||
+ | The question asks for <math>CE</math>, which is <math>CD-x=107-3=\boxed{104}</math>. |
Revision as of 12:40, 2 February 2024
We use simple geometry to solve this problem.
We are given that , , , and are concyclic; call the circle that they all pass through circle with center . We know that, given any chord on a circle, the perpendicular bisector to the chord passes through the center; thus, given two chords, taking the intersection of their perpendicular bisectors gives the center. We therefore consider chords and and take the midpoints of and to be and , respectively.
We could draw the circumcircle, but actually it does not matter for our solution; all that matters is that , where is the circumradius.
By the Pythagorean Theorem, . Also, . We know that , and ; ; ; and finally, . Let . We now know that and . Recall that ; thus, . We solve for :
\begin{align*} (x+92)^2+8^2&=25^2+92^2 \\ (x+92)^2&=625+(100-8)^2-8^2 \\ &=625+10000-1600+64-64 \\ &=9025 \\ x+92&=95 \\ x&=3. \\ \end{align*}
The question asks for , which is .