Difference between revisions of "2002 AMC 12P Problems/Problem 9"
(→See also) |
(→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | + | Two walls and the ceiling of a room meet at right angles at point <math>P.</math> A fly is in the air one meter from one wall, eight meters from the other wall, and nine meters from point <math>P</math>. How many meters is the fly from the ceiling? | |
− | <math> \ | + | <math>\text{(A) }\sqrt{13} \qquad \text{(B) }\sqrt{14} \qquad \text{(C) }\sqrt{15} \qquad \text{(D) }4 \qquad \text{(E) }\sqrt{17}</math> |
== Solution == | == Solution == |
Revision as of 23:46, 29 December 2023
Problem
Two walls and the ceiling of a room meet at right angles at point A fly is in the air one meter from one wall, eight meters from the other wall, and nine meters from point . How many meters is the fly from the ceiling?
Solution
If , then . Since , must be to some factor of 6. Thus, there are four (3, 9, 27, 729) possible values of .
See also
2002 AMC 12P (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.