Difference between revisions of "2002 AMC 12P Problems/Problem 10"

(Problem)
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
Let <math>f_n (x) = \text{sin}^n x + \text{cos}^n x.</math> For how many <math>x</math> in <math>[0,\pi]</math> is it true that
 
Let <math>f_n (x) = \text{sin}^n x + \text{cos}^n x.</math> For how many <math>x</math> in <math>[0,\pi]</math> is it true that
 +
 +
<cmath>6f_{4}(x)-4f_{6}(x)=2f_{2}(x)?</cmath>
  
 
<math>
 
<math>

Revision as of 00:09, 31 December 2023

Problem

Let $f_n (x) = \text{sin}^n x + \text{cos}^n x.$ For how many $x$ in $[0,\pi]$ is it true that

\[6f_{4}(x)-4f_{6}(x)=2f_{2}(x)?\]

$\text{(A) }2 \qquad \text{(B) }4  \qquad \text{(C) }6 \qquad \text{(D) }8 \qquad \text{(E) more than }8$

Solution

If $\log_{b} 729 = n$, then $b^n = 729$. Since $729 = 3^6$, $b$ must be $3$ to some factor of 6. Thus, there are four (3, 9, 27, 729) possible values of $b \Longrightarrow \boxed{\mathrm{E}}$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png