Difference between revisions of "2002 AMC 12P Problems/Problem 15"

(Problem)
m (Solution)
Line 15: Line 15:
  
 
== Solution ==
 
== Solution ==
If <math>\log_{b} 729 = n</math>, then <math>b^n = 729</math>. Since <math>729 = 3^6</math>, <math>b</math> must be <math>3</math> to some [[factor]] of 6. Thus, there are four (3, 9, 27, 729) possible values of <math>b \Longrightarrow \boxed{\mathrm{E}}</math>.
+
We find the values of <math>P_s</math> and <math>P_d</math>.
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=14|num-a=16}}
 
{{AMC12 box|year=2002|ab=P|num-b=14|num-a=16}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:09, 10 March 2024

Problem

There are $1001$ red marbles and $1001$ black marbles in a box. Let $P_s$ be the probability that two marbles drawn at random from the box are the same color, and let $P_d$ be the probability that they are different colors. Find $|P_s-P_d|.$

$\text{(A) }0 \qquad \text{(B) }\frac{1}{2002} \qquad \text{(C) }\frac{1}{2001} \qquad \text{(D) }\frac {2}{2001} \qquad \text{(E) }\frac{1}{1000}$

Solution

We find the values of $P_s$ and $P_d$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png