Difference between revisions of "2002 AMC 12P Problems/Problem 11"

(Problem)
m (Solution)
Line 17: Line 17:
  
 
== Solution ==
 
== Solution ==
If <math>\log_{b} 729 = n</math>, then <math>b^n = 729</math>. Since <math>729 = 3^6</math>, <math>b</math> must be <math>3</math> to some [[factor]] of 6. Thus, there are four (3, 9, 27, 729) possible values of <math>b \Longrightarrow \boxed{\mathrm{E}}</math>.
+
We may write <math>\frac{1}{t_n}</math> as <math>\frac{2}{n(n+1)}</math>
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=10|num-a=12}}
 
{{AMC12 box|year=2002|ab=P|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 13:32, 10 March 2024

Problem

Let $t_n = \frac{n(n+1)}{2}$ be the $n$th triangular number. Find

\[\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + ... + \frac{1}{t_{2002}}\]

$\text{(A) }\frac {4003}{2003} \qquad \text{(B) }\frac {2001}{1001} \qquad \text{(C) }\frac {4004}{2003} \qquad \text{(D) }\frac {4001}{2001} \qquad \text{(E) }2$

Solution

We may write $\frac{1}{t_n}$ as $\frac{2}{n(n+1)}$

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png