Difference between revisions of "1981 AHSME Problems/Problem 17"

(Solution)
Line 15: Line 15:
  
 
<math>f(x)+f\left(\dfrac{1}x\right)=x+\frac{1}{x}</math>
 
<math>f(x)+f\left(\dfrac{1}x\right)=x+\frac{1}{x}</math>
 +
 +
Subtracting this from <math>f(\frac{1}{x})+2f(x)=\frac{3}{x}</math>, we have
 +
 +
 +
<math>f(x)=\frac{2}{x}-x</math>

Revision as of 00:21, 17 January 2024

Problem

The function $f$ is not defined for $x=0$, but, for all non-zero real numbers $x$, $f(x)+2f\left(\dfrac{1}x\right)=3x$. The equation $f(x)=f(-x)$ is satisfied by

$\textbf{(A)}\ \text{exactly one real number} \qquad \textbf{(B)}\ \text{exactly two real numbers} \qquad\textbf{(C)}\ \text{no real numbers}\qquad \\ \textbf{(D)}\ \text{infinitely many, but not all, non-zero real numbers} \qquad\textbf{(E)}\ \text{all non-zero real numbers}$

Solution

Substitute $x$ with $\frac{1}{x}$.

$f(\frac{1}{x})+2f(x)=\frac{3}{x}$

Adding this to $f(x)+2f\left(\dfrac{1}x\right)=3x$, we get

$3f(x)+3f\left(\dfrac{1}x\right)=3x+\frac{3}{x}$, or

$f(x)+f\left(\dfrac{1}x\right)=x+\frac{1}{x}$

Subtracting this from $f(\frac{1}{x})+2f(x)=\frac{3}{x}$, we have


$f(x)=\frac{2}{x}-x$