Difference between revisions of "SANSKAR'S OG PROBLEMS"

(Solution 1 by ddk001)
m
Line 5: Line 5:
 
==Problem1 ==
 
==Problem1 ==
 
Let <math>\overline{ab}</math> be a 2-digit [[positive integer]] satisfying <math>\overline{ab}^2</math> = <math>a! +b!</math>. Find <math>a+b</math> .
 
Let <math>\overline{ab}</math> be a 2-digit [[positive integer]] satisfying <math>\overline{ab}^2</math> = <math>a! +b!</math>. Find <math>a+b</math> .
==Solution 1 by ddk001==
 
oopies, read the question wrong
 
  
 
==Problem2 ==
 
==Problem2 ==
 
For any [[positive integer]] <math>n</math>, <math>n</math>>1 can <math>n!</math> be a [[perfect square]]? If yes, give one such <math>n</math>. If no, then prove it.
 
For any [[positive integer]] <math>n</math>, <math>n</math>>1 can <math>n!</math> be a [[perfect square]]? If yes, give one such <math>n</math>. If no, then prove it.

Revision as of 10:59, 24 January 2024

Hi, this page is created by ...~ SANSGANKRSNGUPTA This page contains exclusive problems made by me myself. I am the creator of these OG problems. What OG stands for is a secret! Please post your solutions with your name. If you view this page please increment the below number by one:

      $02$

Problem1

Let $\overline{ab}$ be a 2-digit positive integer satisfying $\overline{ab}^2$ = $a! +b!$. Find $a+b$ .

Problem2

For any positive integer $n$, $n$>1 can $n!$ be a perfect square? If yes, give one such $n$. If no, then prove it.