Difference between revisions of "2024 AIME I Problems/Problem 2"

Line 1: Line 1:
Determine all composite integers <math>n>1</math> that satisfy the following property: if <math>d_1,d_2,\dots,d_k</math> are all the positive divisors of <math>n</math> with <math>1=d_1<d_2<\dots<d_k=n</math>, then <math>d_i</math> divides <math>d_{i+1}+d_{i+2}</math> for every <math>1\le i \le k-2</math>.
+
There exist real numbers <math>x</math> and <math>y</math>, both greater than 1, such that <math>\log_x\left(y^x\right)=\log_y\left(x^{4y}\right)=10</math>. Find <math>xy</math>.
 +
 
 +
==Solution 1==
 +
 
 +
By properties of logarithms, we can simplify the given equation to <math>x\log_xy=4y\log_yx=10</math>. Let us break this into two separate equations:
 +
\begin{align*}
 +
x\log_xy&=10 \
 +
4y\log_yx&=10. \
 +
\end{align*}
 +
We multiply the two equations to get:
 +
<cmath>4xy\left(\log_xy\log_yx\right)=100.</cmath>
 +
 
 +
Also by properties of logarithms, we know that <math>\log_ab\cdot\log_ba=1</math>; thus, <math>\log_xy\cdot\log_yx=1</math>. Therefore, our equation simplifies to:
 +
 
 +
<cmath>4xy=100\implies xy=\boxed{025}.</cmath>
 +
 
 +
~Technodoggo

Revision as of 12:42, 2 February 2024

There exist real numbers $x$ and $y$, both greater than 1, such that $\log_x\left(y^x\right)=\log_y\left(x^{4y}\right)=10$. Find $xy$.

Solution 1

By properties of logarithms, we can simplify the given equation to $x\log_xy=4y\log_yx=10$. Let us break this into two separate equations: xlogxy=104ylogyx=10. We multiply the two equations to get: \[4xy\left(\log_xy\log_yx\right)=100.\]

Also by properties of logarithms, we know that $\log_ab\cdot\log_ba=1$; thus, $\log_xy\cdot\log_yx=1$. Therefore, our equation simplifies to:

\[4xy=100\implies xy=\boxed{025}.\]

~Technodoggo