Difference between revisions of "2024 AIME II Problems/Problem 7"

(Solution 1)
Line 10: Line 10:
  
 
Applying casework on <math>a</math>, we can eventually obtain a working value of <math>\overline{abcd} = 5694 \implies \boxed{699}</math>. ~akliu
 
Applying casework on <math>a</math>, we can eventually obtain a working value of <math>\overline{abcd} = 5694 \implies \boxed{699}</math>. ~akliu
 +
 +
==Solution 2==
 +
Let our four digit number be <math>abcd</math>. Replacing digits with 1, we get the following equations:
 +
 +
<math>1000+100b+10c+d \equiv 0 \pmod{7}</math>
 +
 +
<math>1000a+100+10c+d \equiv 0 \pmod{7}</math>
 +
 +
<math>1000a+100b+10+d \equiv 0 \pmod{7}</math>
 +
 +
<math>1000a+100b+10c+1 \equiv 0 \pmod{7}</math>
 +
 +
Reducing, we get
 +
 +
<math>6+2b+3c+d \equiv 0 \pmod{7}</math>  <math>(1)</math>
 +
 +
<math>6a+2+3c+d \equiv 0 \pmod{7}</math>  <math>(2)</math>
 +
 +
<math>6a+2b+3+d \equiv 0 \pmod{7}</math>    <math>(3)</math>
 +
 +
<math>6a+2b+3c+1 \equiv 0 \pmod{7}</math>    <math>(4)</math>
 +
 +
Subtracting <math>(2)-(1), (3)-(2), (4)-(3), (4)-(1)</math>, we get:
 +
 +
<math>3a-b \equiv 2 \pmod{7}</math>
 +
 +
<math>2b-3c \equiv 6 \pmod{7}</math>
 +
 +
<math>3c-d \equiv 2 \pmod{7}</math>
 +
 +
<math>6a-d \equiv 5 \pmod{7}</math>
 +
 +
For the largest 4 digit number, we test values for a starting with 9. When a is 9, b is 4, c is 3, and d is 7.  However, when switching the digits with 1, we quickly notice this doesnt work. Once we get to a=5, we get b=6,c=9,and d=4. Adding 694 with 5, we get <math>\boxed{699}</math> -westwoodmonster

Revision as of 20:50, 8 February 2024

Problem

Let $N$ be the greatest four-digit positive integer with the property that whenever one of its digits is changed to $1$, the resulting number is divisible by $7$. Let $Q$ and $R$ be the quotient and remainder, respectively, when $N$ is divided by $1000$. Find $Q+R$.

Solution 1

We note that by changing a digit to $1$ for the number $\overline{abcd}$, we are subtracting the number by either $1000(a-1)$, $100(b-1)$, $10(c-1)$, or $d-1$. Thus, $1000a + 100b + 10c + d \equiv 1000(a-1) \equiv 100(b-1) \equiv 10(c-1) \equiv d-1 \pmod{7}$. We can casework on $a$ backwards, finding the maximum value.

(Note that computing $1000 \equiv 6 \pmod{7}, 100 \equiv 2 \pmod{7}, 10 \equiv 3 \pmod{7}$ greatly simplifies computation).

Applying casework on $a$, we can eventually obtain a working value of $\overline{abcd} = 5694 \implies \boxed{699}$. ~akliu

Solution 2

Let our four digit number be $abcd$. Replacing digits with 1, we get the following equations:

$1000+100b+10c+d \equiv 0 \pmod{7}$

$1000a+100+10c+d \equiv 0 \pmod{7}$

$1000a+100b+10+d \equiv 0 \pmod{7}$

$1000a+100b+10c+1 \equiv 0 \pmod{7}$

Reducing, we get

$6+2b+3c+d \equiv 0 \pmod{7}$ $(1)$

$6a+2+3c+d \equiv 0 \pmod{7}$ $(2)$

$6a+2b+3+d \equiv 0 \pmod{7}$ $(3)$

$6a+2b+3c+1 \equiv 0 \pmod{7}$ $(4)$

Subtracting $(2)-(1), (3)-(2), (4)-(3), (4)-(1)$, we get:

$3a-b \equiv 2 \pmod{7}$

$2b-3c \equiv 6 \pmod{7}$

$3c-d \equiv 2 \pmod{7}$

$6a-d \equiv 5 \pmod{7}$

For the largest 4 digit number, we test values for a starting with 9. When a is 9, b is 4, c is 3, and d is 7. However, when switching the digits with 1, we quickly notice this doesnt work. Once we get to a=5, we get b=6,c=9,and d=4. Adding 694 with 5, we get $\boxed{699}$ -westwoodmonster