Difference between revisions of "2024 USAJMO Problems/Problem 1"
Mathkiddie (talk | contribs) (Undo revision 217207 by Mathkiddie (talk)) (Tag: Undo) |
Technodoggo (talk | contribs) m (fixed diagrams because bad) |
||
Line 9: | Line 9: | ||
First, let <math>E</math> and <math>F</math> be the midpoints of <math>AB</math> and <math>CD</math>, respectively. It is clear that <math>AE=BE=3.5</math>, <math>PE=QE=0.5</math>, <math>DF=CF=4</math>, and <math>SF=RF=2</math>. Also, let <math>O</math> be the circumcenter of <math>ABCD</math>. | First, let <math>E</math> and <math>F</math> be the midpoints of <math>AB</math> and <math>CD</math>, respectively. It is clear that <math>AE=BE=3.5</math>, <math>PE=QE=0.5</math>, <math>DF=CF=4</math>, and <math>SF=RF=2</math>. Also, let <math>O</math> be the circumcenter of <math>ABCD</math>. | ||
− | + | <asy> /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | |
import graph; size(12cm); | import graph; size(12cm); | ||
real labelscalefactor = 0.5; /* changes label-to-point distance */ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
Line 26: | Line 26: | ||
/* dots and labels */ | /* dots and labels */ | ||
dot((2.92,-3.28),dotstyle); | dot((2.92,-3.28),dotstyle); | ||
− | label(" | + | label("$O$", (2.43,-3.56), NE * labelscalefactor); |
dot((-2.52,-1.01),dotstyle); | dot((-2.52,-1.01),dotstyle); | ||
− | label(" | + | label("$A$", (-2.91,-0.91), NE * labelscalefactor); |
dot((3.46,2.59),linewidth(4pt) + dotstyle); | dot((3.46,2.59),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$B$", (3.49,2.78), NE * labelscalefactor); |
dot((7.59,-6.88),dotstyle); | dot((7.59,-6.88),dotstyle); | ||
− | label(" | + | label("$C$", (7.82,-7.24), NE * labelscalefactor); |
dot((-0.29,-8.22),linewidth(4pt) + dotstyle); | dot((-0.29,-8.22),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$D$", (-0.53,-8.62), NE * labelscalefactor); |
dot((0.03,0.52),linewidth(4pt) + dotstyle); | dot((0.03,0.52),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$P$", (-0.13,0.67), NE * labelscalefactor); |
dot((0.89,1.04),linewidth(4pt) + dotstyle); | dot((0.89,1.04),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$Q$", (0.62,1.16), NE * labelscalefactor); |
dot((5.61,-7.22),linewidth(4pt) + dotstyle); | dot((5.61,-7.22),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$R$", (5.70,-7.05), NE * labelscalefactor); |
dot((1.67,-7.89),linewidth(4pt) + dotstyle); | dot((1.67,-7.89),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$S$", (1.75,-7.73), NE * labelscalefactor); |
dot((0.46,0.78),linewidth(4pt) + dotstyle); | dot((0.46,0.78),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$E$", (0.26,0.93), NE * labelscalefactor); |
dot((3.64,-7.55),linewidth(4pt) + dotstyle); | dot((3.64,-7.55),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$F$", (3.73,-7.39), NE * labelscalefactor); |
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
− | /* end of picture */ | + | /* end of picture */</asy> |
By properties of cyclic quadrilaterals, we know that the circumcenter of a cyclic quadrilateral is the intersection of its sides' perpendicular bisectors. This implies that <math>OE\perp AB</math> and <math>OF\perp CD</math>. Since <math>E</math> and <math>F</math> are also bisectors of <math>PQ</math> and <math>RS</math>, respectively, if <math>PQRS</math> is indeed a cyclic quadrilateral, then its circumcenter is also at <math>O</math>. Thus, it suffices to show that <math>OP=OQ=OR=OS</math>. | By properties of cyclic quadrilaterals, we know that the circumcenter of a cyclic quadrilateral is the intersection of its sides' perpendicular bisectors. This implies that <math>OE\perp AB</math> and <math>OF\perp CD</math>. Since <math>E</math> and <math>F</math> are also bisectors of <math>PQ</math> and <math>RS</math>, respectively, if <math>PQRS</math> is indeed a cyclic quadrilateral, then its circumcenter is also at <math>O</math>. Thus, it suffices to show that <math>OP=OQ=OR=OS</math>. | ||
Line 56: | Line 56: | ||
Draw the segments connecting <math>O</math> to <math>B</math>, <math>Q</math>, <math>C</math>, and <math>R</math>. | Draw the segments connecting <math>O</math> to <math>B</math>, <math>Q</math>, <math>C</math>, and <math>R</math>. | ||
− | + | <asy> /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | |
import graph; size(12cm); | import graph; size(12cm); | ||
real labelscalefactor = 0.5; /* changes label-to-point distance */ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
Line 79: | Line 79: | ||
/* dots and labels */ | /* dots and labels */ | ||
dot((2.92,-3.28),dotstyle); | dot((2.92,-3.28),dotstyle); | ||
− | label(" | + | label("$O$", (2.43,-3.56), NE * labelscalefactor); |
dot((-2.52,-1.01),dotstyle); | dot((-2.52,-1.01),dotstyle); | ||
− | label(" | + | label("$A$", (-2.91,-0.91), NE * labelscalefactor); |
dot((3.46,2.59),linewidth(1pt) + dotstyle); | dot((3.46,2.59),linewidth(1pt) + dotstyle); | ||
− | label(" | + | label("$B$", (3.49,2.78), NE * labelscalefactor); |
dot((7.59,-6.88),dotstyle); | dot((7.59,-6.88),dotstyle); | ||
− | label(" | + | label("$C$", (7.82,-7.24), NE * labelscalefactor); |
dot((-0.29,-8.22),linewidth(1pt) + dotstyle); | dot((-0.29,-8.22),linewidth(1pt) + dotstyle); | ||
− | label(" | + | label("$D$", (-0.53,-8.62), NE * labelscalefactor); |
dot((0.03,0.52),linewidth(1pt) + dotstyle); | dot((0.03,0.52),linewidth(1pt) + dotstyle); | ||
− | label(" | + | label("$P$", (-0.13,0.67), NE * labelscalefactor); |
dot((0.89,1.04),linewidth(1pt) + dotstyle); | dot((0.89,1.04),linewidth(1pt) + dotstyle); | ||
− | label(" | + | label("$Q$", (0.62,1.16), NE * labelscalefactor); |
dot((5.61,-7.22),linewidth(1pt) + dotstyle); | dot((5.61,-7.22),linewidth(1pt) + dotstyle); | ||
− | label(" | + | label("$R$", (5.70,-7.05), NE * labelscalefactor); |
dot((1.67,-7.89),linewidth(1pt) + dotstyle); | dot((1.67,-7.89),linewidth(1pt) + dotstyle); | ||
− | label(" | + | label("$S$", (1.75,-7.73), NE * labelscalefactor); |
dot((0.46,0.78),linewidth(1pt) + dotstyle); | dot((0.46,0.78),linewidth(1pt) + dotstyle); | ||
− | label(" | + | label("$E$", (0.26,0.93), NE * labelscalefactor); |
dot((3.64,-7.55),linewidth(1pt) + dotstyle); | dot((3.64,-7.55),linewidth(1pt) + dotstyle); | ||
− | label(" | + | label("$F$", (3.73,-7.39), NE * labelscalefactor); |
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
− | /* end of picture */ | + | /* end of picture */</asy> |
Also, let <math>r</math> be the circumradius of <math>ABCD</math>. This means that <math>AO=BO=CO=DO=r</math>. Recall that <math>\angle BEO=90^\circ</math> and <math>\angle CFO=90^\circ</math>. Notice the several right triangles in our figure. | Also, let <math>r</math> be the circumradius of <math>ABCD</math>. This means that <math>AO=BO=CO=DO=r</math>. Recall that <math>\angle BEO=90^\circ</math> and <math>\angle CFO=90^\circ</math>. Notice the several right triangles in our figure. |
Revision as of 22:42, 21 March 2024
Contents
Problem
sus
Solution 1
First, let and be the midpoints of and , respectively. It is clear that , , , and . Also, let be the circumcenter of .
By properties of cyclic quadrilaterals, we know that the circumcenter of a cyclic quadrilateral is the intersection of its sides' perpendicular bisectors. This implies that and . Since and are also bisectors of and , respectively, if is indeed a cyclic quadrilateral, then its circumcenter is also at . Thus, it suffices to show that .
Notice that , , and . By SAS congruency, . Similarly, we find that and . We now need only to show that these two pairs are equal to each other.
Draw the segments connecting to , , , and .
Also, let be the circumradius of . This means that . Recall that and . Notice the several right triangles in our figure.
Let us apply Pythagorean Theorem on . We can see that
Let us again apply Pythagorean Theorem on . We can see that
Let us apply Pythagorean Theorem on . We get .
We finally apply Pythagorean Theorem on . This becomes .
This is the same expression as we got for . Thus, , and recalling that and , we have shown that . We are done. QED
~Technodoggo
See Also
2024 USAJMO (Problems • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.