Difference between revisions of "1995 IMO Problems/Problem 2"
(problems and solutions) |
|||
Line 34: | Line 34: | ||
The desired conclusion follows. <math>\blacksquare</math> | The desired conclusion follows. <math>\blacksquare</math> | ||
+ | === Solution 3 === | ||
+ | Without clever substitutions: | ||
+ | By Cauchy-Schwarz, <cmath>\left(\sum_{cyc}\dfrac{1}{a^3 (b+c)}\right)\left(\sum_{cyc}a(b+c)\right)\geq \left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right) ^2=(ab+ac+bc)^2</cmath> Dividing by <math>2(ab+bc+ac)</math> gives <cmath>\dfrac{1}{a^3 (b+c)}+\dfrac{1}{b^3 (a+c)}+\dfrac{1}{c^3 (a+b)}\geq \dfrac{1}{2}(ab+bc+ac)\geq \dfrac{3}{2}</cmath> by AM-GM. | ||
{{alternate solutions}} | {{alternate solutions}} |
Revision as of 15:12, 7 August 2011
Problem
(Nazar Agakhanov, Russia)
Let be positive real numbers such that
. Prove that
Solution
Solution 1
We make the substitution ,
,
. Then
Since
and
are similarly sorted sequences, it follows from the Rearrangement Inequality that
By the Power Mean Inequality,
Symmetric application of this argument yields
Finally, AM-GM gives us
as desired.
Solution 2
We make the same substitution as in the first solution. We note that in general,
It follows that
and
are similarly sorted sequences. Then by Chebyshev's Inequality,
By AM-GM,
, and by Nesbitt's Inequality,
The desired conclusion follows.
Solution 3
Without clever substitutions:
By Cauchy-Schwarz, Dividing by
gives
by AM-GM.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.