Difference between revisions of "2024 INMO"
(→Solution 1) |
(→Solution 1) |
||
Line 2: | Line 2: | ||
\text {In} triangle ABC with <math>CA=CB</math>, \text{point E lies on the circumcircle of} \text{triangle ABC such that} <math>\angle ECB=90^\circ</math>. \text{The line through E parallel to CB intersect CA in F} \text{and AB in G}.\text{Prove that}\\ \text{the centre of the circumcircle of} triangle EGB \text{lies on the circumcircle of triangle ECF.} | \text {In} triangle ABC with <math>CA=CB</math>, \text{point E lies on the circumcircle of} \text{triangle ABC such that} <math>\angle ECB=90^\circ</math>. \text{The line through E parallel to CB intersect CA in F} \text{and AB in G}.\text{Prove that}\\ \text{the centre of the circumcircle of} triangle EGB \text{lies on the circumcircle of triangle ECF.} | ||
− | ==Solution | + | ==Solution== |
Revision as of 12:47, 25 April 2024
==Problem 1
\text {In} triangle ABC with , \text{point E lies on the circumcircle of} \text{triangle ABC such that} . \text{The line through E parallel to CB intersect CA in F} \text{and AB in G}.\text{Prove that}\\ \text{the centre of the circumcircle of} triangle EGB \text{lies on the circumcircle of triangle ECF.}