Difference between revisions of "Arcticturn Prep"
Arcticturn (talk | contribs) |
Arcticturn (talk | contribs) (→Problem 6) |
||
Line 9: | Line 9: | ||
<cmath>x^4 + 2ax^3 + (2a - 2)x^2 + (-4a + 3)x - 2</cmath> | <cmath>x^4 + 2ax^3 + (2a - 2)x^2 + (-4a + 3)x - 2</cmath> | ||
are all real can be written in the form <math>\dfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | are all real can be written in the form <math>\dfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | ||
+ | |||
+ | ==Problem 9== | ||
+ | |||
+ | Octagon <math>ABCDEFGH</math> with side lengths <math>AB = CD = EF = GH = 10</math> and <math>BC = DE = FG = HA = 11</math> is formed by removing 6-8-10 triangles from the corners of a <math>23</math> <math>\times</math> <math>27</math> rectangle with side <math>\overline{AH}</math> on a short side of the rectangle, as shown. Let <math>J</math> be the midpoint of <math>\overline{AH}</math>, and partition the octagon into 7 triangles by drawing segments <math>\overline{JB}</math>, <math>\overline{JC}</math>, <math>\overline{JD}</math>, <math>\overline{JE}</math>, <math>\overline{JF}</math>, and <math>\overline{JG}</math>. Find the area of the convex polygon whose vertices are the centroids of these 7 triangles. | ||
+ | |||
+ | [asy] unitsize(6); pair P = (0, 0), Q = (0, 23), R = (27, 23), SS = (27, 0); pair A = (0, 6), B = (8, 0), C = (19, 0), D = (27, 6), EE = (27, 17), F = (19, 23), G = (8, 23), J = (0, 23/2), H = (0, 17); draw(P--Q--R--SS--cycle); draw(J--B); draw(J--C); draw(J--D); draw(J--EE); draw(J--F); draw(J--G); draw(A--B); draw(H--G); real dark = 0.6; filldraw(A--B--P--cycle, gray(dark)); filldraw(H--G--Q--cycle, gray(dark)); filldraw(F--EE--R--cycle, gray(dark)); filldraw(D--C--SS--cycle, gray(dark)); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(J); dot(H); defaultpen(fontsize(10pt)); real r = 1.3; label("<math>A</math>", A, W*r); label("<math>B</math>", B, S*r); label("<math>C</math>", C, S*r); label("<math>D</math>", D, E*r); label("<math>E</math>", EE, E*r); label("<math>F</math>", F, N*r); label("<math>G</math>", G, N*r); label("<math>H</math>", H, W*r); label("<math>J</math>", J, W*r); [/asy] |
Revision as of 19:26, 15 June 2024
Problem 5
Suppose that , , and are complex numbers such that , , and , where . Then there are real numbers and such that . Find .
Problem 6
A real number is chosen randomly and uniformly from the interval . The probability that the roots of the polynomial
are all real can be written in the form , where and are relatively prime positive integers. Find .
Problem 9
Octagon with side lengths and is formed by removing 6-8-10 triangles from the corners of a rectangle with side on a short side of the rectangle, as shown. Let be the midpoint of , and partition the octagon into 7 triangles by drawing segments , , , , , and . Find the area of the convex polygon whose vertices are the centroids of these 7 triangles.
[asy] unitsize(6); pair P = (0, 0), Q = (0, 23), R = (27, 23), SS = (27, 0); pair A = (0, 6), B = (8, 0), C = (19, 0), D = (27, 6), EE = (27, 17), F = (19, 23), G = (8, 23), J = (0, 23/2), H = (0, 17); draw(P--Q--R--SS--cycle); draw(J--B); draw(J--C); draw(J--D); draw(J--EE); draw(J--F); draw(J--G); draw(A--B); draw(H--G); real dark = 0.6; filldraw(A--B--P--cycle, gray(dark)); filldraw(H--G--Q--cycle, gray(dark)); filldraw(F--EE--R--cycle, gray(dark)); filldraw(D--C--SS--cycle, gray(dark)); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(J); dot(H); defaultpen(fontsize(10pt)); real r = 1.3; label("", A, W*r); label("", B, S*r); label("", C, S*r); label("", D, E*r); label("", EE, E*r); label("", F, N*r); label("", G, N*r); label("", H, W*r); label("", J, W*r); [/asy]