Difference between revisions of "2006 AMC 8 Problems/Problem 24"
(→Solution 2) |
(→Solution 3) |
||
Line 18: | Line 18: | ||
<math>CDCD = CD \cdot 101</math>, so <math>ABA = 101</math>. Therefore, <math>A = 1</math> and <math>B = 0</math>, so <math>A+B=1+0=\boxed{\textbf{(A)}\ 1}</math>. | <math>CDCD = CD \cdot 101</math>, so <math>ABA = 101</math>. Therefore, <math>A = 1</math> and <math>B = 0</math>, so <math>A+B=1+0=\boxed{\textbf{(A)}\ 1}</math>. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solution 4== | ==Solution 4== |
Revision as of 08:29, 18 June 2024
Contents
Problem
In the multiplication problem below , , , are different digits. What is ?
Video Solution by OmegaLearn
https://youtu.be/7an5wU9Q5hk?t=3080
Video Solution
https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://www.youtube.com/watch?v=Y4DXkhYthhs ~David
Solution 1
, so . Therefore, and , so .
Solution 4
We know that is 1 because after you multiply the first column and you get . Noticing that the value of does not matter as long it is a digit number, let's give the value of the digit number . After doing some multiplication using the traditional method, our product is . We know that our end product has to be , so since our value of is 10 our product should be . Therefore, is 0 because is in the spot of . We are not done as the problem is asking for the value of which is just .
- LearnForEver
See Also
2006 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.