Difference between revisions of "2024 IMO Problems/Problem 2"

(Created page with "Find all positive integer pairs <math>(a,b),</math> such that there exists positive integer <math>g,N,</math> <cmath>\gcd (a^n+b,b^n+a)=g</cmath> holds for all integer <math>n...")
 
Line 1: Line 1:
 
Find all positive integer pairs <math>(a,b),</math> such that there exists positive integer <math>g,N,</math>
 
Find all positive integer pairs <math>(a,b),</math> such that there exists positive integer <math>g,N,</math>
 
<cmath>\gcd (a^n+b,b^n+a)=g</cmath>
 
<cmath>\gcd (a^n+b,b^n+a)=g</cmath>
holds for all integer <math>n\ge N</math>
+
holds for all integer <math>n\ge N</math>.

Revision as of 21:34, 16 July 2024

Find all positive integer pairs $(a,b),$ such that there exists positive integer $g,N,$ \[\gcd (a^n+b,b^n+a)=g\] holds for all integer $n\ge N$.