Difference between revisions of "2024 IMO Problems/Problem 4"
Hhuangterry (talk | contribs) |
|||
Line 6: | Line 6: | ||
Prove that <math>\angle KIL + \angle YPX = 180^{\circ}</math> | Prove that <math>\angle KIL + \angle YPX = 180^{\circ}</math> | ||
. | . | ||
+ | ==Video Solution== | ||
+ | https://youtu.be/WnZv3fdpFXo |
Revision as of 02:46, 19 July 2024
Let be a triangle with . Let the incentre and incircle of triangle be and , respectively. Let be the point on line different from such that the line through parallel to is tangent to . Similarly, let be the point on line different from such that the line through parallel to is tangent to . Let intersect the circumcircle of triangle again at . Let and be the midpoints of and , respectively. Prove that .