Difference between revisions of "2024 IMO Problems/Problem 1"
Bobwang001 (talk | contribs) |
Bobwang001 (talk | contribs) (→Video Solution) |
||
Line 5: | Line 5: | ||
is a multiple of <math>n</math>. (Note that <math>\lfloor z \rfloor</math> denotes the greatest integer less than or equal to <math>z</math>. For example, <math>\lfloor -\pi \rfloor = -4</math> and <math>\lfloor 2 \rfloor = \lfloor 2.9 \rfloor = 2</math>.) | is a multiple of <math>n</math>. (Note that <math>\lfloor z \rfloor</math> denotes the greatest integer less than or equal to <math>z</math>. For example, <math>\lfloor -\pi \rfloor = -4</math> and <math>\lfloor 2 \rfloor = \lfloor 2.9 \rfloor = 2</math>.) | ||
− | ==Video Solution== | + | ==Video Solution(In Chinese)== |
https://www.youtube.com/watch?v=LW54i7rWkpI | https://www.youtube.com/watch?v=LW54i7rWkpI | ||
Revision as of 23:05, 26 July 2024
Determine all real numbers such that, for every positive integer , the integer
is a multiple of . (Note that denotes the greatest integer less than or equal to . For example, and .)
Video Solution(In Chinese)
https://www.youtube.com/watch?v=LW54i7rWkpI
Video Solution
https://www.youtube.com/watch?v=50W_ntnPX0k
Video Solution
Part 1 (analysis of why there is no irrational solution)
Part 2 (analysis of even integer solutions and why there is no non-integer rational solution)
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)