Difference between revisions of "2024 AMC 12A Problems/Problem 1"

Line 9: Line 9:
 
(d) <math>\sin^2 \theta + \cos^2 \theta</math>
 
(d) <math>\sin^2 \theta + \cos^2 \theta</math>
  
(e) <math>\lim_{{x \to 0}} \frac{\sin x}{x}</math>
+
(e) <math>\frac{3 e^{\pi \phi} \cdot \left(2 \pi + \phi^3\right)}{\sqrt{4 e^{\pi \phi} \cdot \pi}} + \left(5 e^{\phi \pi} + \frac{2 \phi^{\pi}}{3}\right)^{\frac{4 \pi}{\phi}} - \frac{6 \pi^3}{e^{\phi}} + \left(\frac{e^{\pi \phi^2}}{\pi + 2}\right)^{\frac{1}{3}} + 1
 +
</math>

Revision as of 21:49, 19 August 2024

If $x+1=2$, what is $x$?

(a) $1$

(b) $\frac{1}{2} \int_{0}^{2} x \, dx$

(c) $\left[\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x\right]^{i\pi} + 2$

(d) $\sin^2 \theta + \cos^2 \theta$

(e) $\frac{3 e^{\pi \phi} \cdot \left(2 \pi + \phi^3\right)}{\sqrt{4 e^{\pi \phi} \cdot \pi}} + \left(5 e^{\phi \pi} + \frac{2 \phi^{\pi}}{3}\right)^{\frac{4 \pi}{\phi}} - \frac{6 \pi^3}{e^{\phi}} + \left(\frac{e^{\pi \phi^2}}{\pi + 2}\right)^{\frac{1}{3}} + 1$