Difference between revisions of "2024 AMC 10A Problems/Problem 10"
m (Protected "2024 AMC 10A Problems/Problem 10" ([Edit=Allow only administrators] (expires 04:59, 8 November 2024 (UTC)) [Move=Allow only administrators] (expires 04:59, 8 November 2024 (UTC))) [cascading]) |
|||
Line 1: | Line 1: | ||
+ | == Problem == | ||
+ | Consider the following operation. Given a positive integer <math>n</math>, if <math>n</math> is a multiple of <math>3</math>, then you replace <math>n</math> by <math> | ||
+ | \frac{n}{3}</math>. If <math>n</math> is not a multiple of <math>3</math>, then you replace <math>n</math> by <math>n+10</math>. Then continue this process. For example, beginning with <math>n=4</math>, this procedure gives <math>4 \rightarrow 14 \rightarrow 24 \rightarrow 8 \rightarrow 18 \rightarrow 6 \rightarrow 2 \rightarrow 12 \rightarrow \cdots</math>. Suppose you start with <math>n=100</math>. What value results if you perform this operation exactly <math>100</math> times. | ||
+ | |||
+ | == Solution 1 == | ||
+ | Let <math>s</math> be the number of times the operation is performed. Notice the sequence goes <math>100 \rightarrow 110 \rightarrow 120 \rightarrow 40 \rightarrow 50 \rightarrow 60 \rightarrow 20 \rightarrow 30 \rightarrow 10 \rightarrow 20 \rightarrow \cdots</math>. Thus, for <math>s \equiv 1 \pmod{3}</math>, the value is <math>30</math>. Since <math>100 \equiv 1 \pmod{3}</math>, the answer is <math>\boxed{\textbf{(B)} 30}</math> | ||
+ | |||
+ | ~andliu766 |
Revision as of 16:29, 8 November 2024
Problem
Consider the following operation. Given a positive integer , if is a multiple of , then you replace by . If is not a multiple of , then you replace by . Then continue this process. For example, beginning with , this procedure gives . Suppose you start with . What value results if you perform this operation exactly times.
Solution 1
Let be the number of times the operation is performed. Notice the sequence goes . Thus, for , the value is . Since , the answer is
~andliu766