Difference between revisions of "2024 AMC 10B Problems/Problem 9"

m (Protected "2024 AMC 10B Problems/Problem 9" ([Edit=Allow only administrators] (expires 04:59, 14 November 2024 (UTC)) [Move=Allow only administrators] (expires 04:59, 14 November 2024 (UTC))))
Line 1: Line 1:
 +
==Problem==
 +
Real numbers <math>a, b, </math> and <math>c</math> have arithmetic mean 0. The arithmetic mean of <math>a^2, b^2, </math> and <math>c^2</math> is 10. What is the arithmetic mean of <math>ab, ac, </math> and <math>bc</math>?
  
 +
<math>\textbf{(A) } -5 \qquad\textbf{(B) } -\dfrac{10}{3} \qquad\textbf{(C) } -\dfrac{10}{9} \qquad\textbf{(D) } 0 \qquad\textbf{(E) } \dfrac{10}{9}</math>
 +
 +
==Solution 1==
 +
 +
If <math>\frac{a+b+c}{3} = 0</math>, that means <math>a+b+c=0</math>, and <math>(a+b+c)^2=0</math>. Expanding that gives <math>(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc</math>. If <math>\frac{a^2+b^2+c^2}{3} = 10</math>, then <math>a^2+b^2+c^2=30</math>. Thus, we have <math>0 = 30 + 2ab + 2ac + 2bc</math>. Arithmetic will give you that <math>ac + bc + ac = -15</math>. To find the arithmetic mean, divide that by 3, so <math>\frac{ac + bc + ac}{3} = \boxed{\textbf{(A) }-5}</math>
 +
 +
==See also==
 +
{{AMC10 box|year=2024|ab=B|num-b=8|num-a=10}}
 +
{{MAA Notice}}

Revision as of 00:54, 14 November 2024

Problem

Real numbers $a, b,$ and $c$ have arithmetic mean 0. The arithmetic mean of $a^2, b^2,$ and $c^2$ is 10. What is the arithmetic mean of $ab, ac,$ and $bc$?

$\textbf{(A) } -5 \qquad\textbf{(B) } -\dfrac{10}{3} \qquad\textbf{(C) } -\dfrac{10}{9} \qquad\textbf{(D) } 0 \qquad\textbf{(E) } \dfrac{10}{9}$

Solution 1

If $\frac{a+b+c}{3} = 0$, that means $a+b+c=0$, and $(a+b+c)^2=0$. Expanding that gives $(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc$. If $\frac{a^2+b^2+c^2}{3} = 10$, then $a^2+b^2+c^2=30$. Thus, we have $0 = 30 + 2ab + 2ac + 2bc$. Arithmetic will give you that $ac + bc + ac = -15$. To find the arithmetic mean, divide that by 3, so $\frac{ac + bc + ac}{3} = \boxed{\textbf{(A) }-5}$

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png