Difference between revisions of "2024 AMC 10B Problems/Problem 9"
m (Protected "2024 AMC 10B Problems/Problem 9" ([Edit=Allow only administrators] (expires 04:59, 14 November 2024 (UTC)) [Move=Allow only administrators] (expires 04:59, 14 November 2024 (UTC)))) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | Real numbers <math>a, b, </math> and <math>c</math> have arithmetic mean 0. The arithmetic mean of <math>a^2, b^2, </math> and <math>c^2</math> is 10. What is the arithmetic mean of <math>ab, ac, </math> and <math>bc</math>? | ||
+ | <math>\textbf{(A) } -5 \qquad\textbf{(B) } -\dfrac{10}{3} \qquad\textbf{(C) } -\dfrac{10}{9} \qquad\textbf{(D) } 0 \qquad\textbf{(E) } \dfrac{10}{9}</math> | ||
+ | |||
+ | ==Solution 1== | ||
+ | |||
+ | If <math>\frac{a+b+c}{3} = 0</math>, that means <math>a+b+c=0</math>, and <math>(a+b+c)^2=0</math>. Expanding that gives <math>(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc</math>. If <math>\frac{a^2+b^2+c^2}{3} = 10</math>, then <math>a^2+b^2+c^2=30</math>. Thus, we have <math>0 = 30 + 2ab + 2ac + 2bc</math>. Arithmetic will give you that <math>ac + bc + ac = -15</math>. To find the arithmetic mean, divide that by 3, so <math>\frac{ac + bc + ac}{3} = \boxed{\textbf{(A) }-5}</math> | ||
+ | |||
+ | ==See also== | ||
+ | {{AMC10 box|year=2024|ab=B|num-b=8|num-a=10}} | ||
+ | {{MAA Notice}} |
Revision as of 00:54, 14 November 2024
Problem
Real numbers and have arithmetic mean 0. The arithmetic mean of and is 10. What is the arithmetic mean of and ?
Solution 1
If , that means , and . Expanding that gives . If , then . Thus, we have . Arithmetic will give you that . To find the arithmetic mean, divide that by 3, so
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.