Difference between revisions of "2024 AMC 12A Problems/Problem 21"
(Created page with "==Problem== Suppose that <math>a_1 = 2</math> and the sequence <math>(a_n)</math> satisfies the recurrence relation <cmath>\frac{a_n -1}{n-1}=\frac{a_{n-1}+1}{(n-1)+1}</cmath>...") |
(solution) |
||
Line 3: | Line 3: | ||
<math>\textbf{(A) } 338{,}550 \qquad \textbf{(B) } 338{,}551 \qquad \textbf{(C) } 338{,}552 \qquad \textbf{(D) } 338{,}553 \qquad \textbf{(E) } 338{,}554</math> | <math>\textbf{(A) } 338{,}550 \qquad \textbf{(B) } 338{,}551 \qquad \textbf{(C) } 338{,}552 \qquad \textbf{(D) } 338{,}553 \qquad \textbf{(E) } 338{,}554</math> | ||
+ | |||
+ | ==Solution== | ||
+ | Multiply both sides of the recurrence to find that <math>n(a_n-1)=(n-1)(a_{n-1}+1)=(n-1)(a_{n-1}-1)+(n-1)(2)</math>. | ||
+ | |||
+ | Let <math>b_n=n(a_n-1)</math>. Then the previous relation becomes | ||
+ | <cmath>b_n=b_{n-1}+2(n-1)</cmath> | ||
+ | |||
+ | We can rewrite this relation for values of <math>n</math> until <math>1</math> and use telescoping to derive an explicit formula: | ||
+ | |||
+ | <cmath>b_n=b_{n-1}+2(n-1)</cmath> | ||
+ | <cmath>b_{n-1}=b_{n-2}+2(n-2)</cmath> | ||
+ | <cmath>b_{n-2}=b_{n-3}+2(n-3)</cmath> | ||
+ | <cmath>\cdot</cmath> | ||
+ | <cmath>\cdot</cmath> | ||
+ | <cmath>\cdot</cmath> | ||
+ | <cmath>b_2=b_1+2(1)</cmath> | ||
+ | |||
+ | Summing the equations yields: | ||
+ | |||
+ | <cmath>b_n+b_{n-1}+\cdots+b_2=b_{n-1}+b_{n-2}+\cdots+b_1+2((n-1)+(n-2)+\cdots+1)</cmath> | ||
+ | <cmath>b_n-b_1=2\cdot\frac{n(n-1)}{2}</cmath> | ||
+ | <cmath>b_n-1=n(n-1)</cmath> | ||
+ | <cmath>b_n=n(n-1)+1</cmath> | ||
+ | |||
+ | Now we can substitute <math>a_n</math> back into our equation: | ||
+ | |||
+ | <cmath>n(a_n-1)=n(n-1)+1</cmath> | ||
+ | <cmath>a_n-1=n-1+\frac{1}{n}</cmath> | ||
+ | <cmath>a_n=n+\frac{1}{n}</cmath> | ||
+ | <cmath>a_n^2=n^2+\frac{1}{n^2}+2</cmath> | ||
+ | |||
+ | Thus the sum becomes | ||
+ | |||
+ | <cmath>\sum^{100}_{n=1} a_n^2= \sum^{100}_{n=1} n^2+ \sum^{100}_{n=1} \frac{1}{n^2}+ \sum^{100}_{n=1} 2</cmath> | ||
+ | |||
+ | We know that <math>\sum^{100}_{n=1} n^2=\frac{100\cdot101\cdot201}{6}=338350</math>, and we also know that <math>\sum^{100}_{n=1} 2=200</math>, so the requested sum is equivalent to <math>\sum^{100}_{n=1} \frac{1}{n^2}+338550</math>. All that remains is to calculate <math>\sum^{100}_{n=1} \frac{1}{n^2}</math>, and we know that this value lies between <math>1</math> and <math>2</math> (see the note below for a proof). Thus, | ||
+ | |||
+ | <cmath>\sum^{100}_{n=1} a_n^2= \sum^{100}_{n=1} \frac{1}{n^2}+338550<2+338550=338552</cmath> | ||
+ | <cmath>\sum^{100}_{n=1} a_n^2= \sum^{100}_{n=1} \frac{1}{n^2}+338550>1+338550=338551</cmath> | ||
+ | |||
+ | so | ||
+ | |||
+ | <cmath>\sum^{100}_{n=1} a_n^2\in(338551,338552)</cmath> | ||
+ | |||
+ | and thus the answer is <math>\boxed{\textbf{(B) }338551}</math>. | ||
+ | |||
+ | ~eevee9406 | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=A|num-b=20|num-a=22}} | {{AMC12 box|year=2024|ab=A|num-b=20|num-a=22}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 19:21, 8 November 2024
Problem
Suppose that and the sequence satisfies the recurrence relation for all What is the greatest integer less than or equal to
Solution
Multiply both sides of the recurrence to find that .
Let . Then the previous relation becomes
We can rewrite this relation for values of until and use telescoping to derive an explicit formula:
Summing the equations yields:
Now we can substitute back into our equation:
Thus the sum becomes
We know that , and we also know that , so the requested sum is equivalent to . All that remains is to calculate , and we know that this value lies between and (see the note below for a proof). Thus,
so
and thus the answer is .
~eevee9406
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.