Difference between revisions of "2024 AMC 12A Problems/Problem 23"
(→Solution 1 (Trigonometric Identities)) |
(→Solution 1 (Trigonometric Identities)) |
||
Line 7: | Line 7: | ||
First, notice that | First, notice that | ||
− | \ | + | \begin{align*} |
− | \tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{3\pi}{16} + \tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{5\pi}{16} + \tan^2 \frac{3\pi}{16} \cdot \tan^2 \frac{7\pi}{16} + \tan^2 \frac{5\pi}{16} \cdot \tan^2 \frac{7\pi}{16} | + | &\tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{3\pi}{16} + \tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{5\pi}{16} + \tan^2 \frac{3\pi}{16} \cdot \tan^2 \frac{7\pi}{16} + \tan^2 \frac{5\pi}{16} \cdot \tan^2 \frac{7\pi}{16} \\ |
− | \ | + | &= \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) |
− | + | \end{align*} | |
− | \ | ||
− | = \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) | ||
− | \ | ||
Here, we use the identity | Here, we use the identity | ||
− | \ | + | \begin{align*} |
− | \tan^2 x + \tan^2 \left( \frac{\pi}{2} - x \right) = \left( \tan x + \tan \left( \frac{\pi}{2} - x \right) \right)^2 - 2 | + | \tan^2 x + \tan^2 \left( \frac{\pi}{2} - x \right) &= \left( \tan x + \tan \left( \frac{\pi}{2} - x \right) \right)^2 - 2 \\ |
− | \ | + | &= \left( \frac{\sin x}{\cos x} + \frac{\sin \left( \frac{\pi}{2} - x \right)}{\cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\ |
− | + | &= \left( \frac{\sin x \cos \left( \frac{\pi}{2} - x \right) + \sin \left( \frac{\pi}{2} - x \right) \cos x}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\ | |
− | \ | + | &= \left( \frac{\sin \frac{\pi}{2}}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\ |
− | = \left( \frac{\sin x}{\cos x} + \frac{\sin \left( \frac{\pi}{2} - x \right)}{\cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 | + | &= \left( \frac{1}{\cos x \sin x} \right)^2 - 2 \\ |
− | \ | + | &= \left( \frac{2}{\sin 2x} \right)^2 - 2 \\ |
− | \ | + | &= \frac{4}{\sin^2 2x} - 2 |
− | = \left( \frac{\sin x \cos \left( \frac{\pi}{2} - x \right) + \sin \left( \frac{\pi}{2} - x \right) \cos x}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 | + | \end{align*} |
− | \ | ||
− | \ | ||
− | = \left( \frac{\sin \frac{\pi}{2}}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 | ||
− | \ | ||
− | \ | ||
− | = \left( \frac{1}{\cos x \sin x} \right)^2 - 2 | ||
− | \ | ||
− | \ | ||
− | = \left( \frac{2}{\sin 2x} \right)^2 - 2 | ||
− | \ | ||
− | \ | ||
− | = \frac{4}{\sin^2 2x} - 2 | ||
− | \ | ||
Hence, | Hence, | ||
− | \ | + | \begin{align*} |
− | \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) = \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) | + | \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) &= \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) |
− | \ | + | \end{align*} |
Note that | Note that | ||
− | \ | + | \begin{align*} |
− | \sin^2 \frac{\pi}{8} = \frac{1 - \cos \frac{\pi}{4}}{2} = \frac{2 - \sqrt{2}}{4} | + | \sin^2 \frac{\pi}{8} &= \frac{1 - \cos \frac{\pi}{4}}{2} = \frac{2 - \sqrt{2}}{4} \\ |
− | \ | + | \sin^2 \frac{3\pi}{8} &= \frac{1 - \cos \frac{3\pi}{4}}{2} = \frac{2 + \sqrt{2}}{4} |
− | + | \end{align*} | |
− | \ | ||
− | \sin^2 \frac{3\pi}{8} = \frac{1 - \cos \frac{3\pi}{4}}{2} = \frac{2 + \sqrt{2}}{4} | ||
− | \ | ||
Thus, | Thus, | ||
− | \ | + | \begin{align*} |
− | \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) = \left( \frac{16}{2 - \sqrt{2}} - 2 \right) \left( \frac{16}{2 + \sqrt{2}} - 2 \right) | + | \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) &= \left( \frac{16}{2 - \sqrt{2}} - 2 \right) \left( \frac{16}{2 + \sqrt{2}} - 2 \right) \\ |
− | \ | + | &= (14 + 8\sqrt{2})(14 - 8\sqrt{2}) \\ |
− | + | &= 68 | |
− | + | \end{align*} | |
− | \ | ||
− | = (14 + 8\sqrt{2})(14 - 8\sqrt{2}) = 68 | ||
− | \ | ||
Therefore, the answer is \(\boxed{\textbf{(B) } 68}\). | Therefore, the answer is \(\boxed{\textbf{(B) } 68}\). |
Revision as of 19:59, 8 November 2024
Problem
What is the value of
Solution 1 (Trigonometric Identities)
First, notice that \begin{align*} &\tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{3\pi}{16} + \tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{5\pi}{16} + \tan^2 \frac{3\pi}{16} \cdot \tan^2 \frac{7\pi}{16} + \tan^2 \frac{5\pi}{16} \cdot \tan^2 \frac{7\pi}{16} \\ &= \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) \end{align*}
Here, we use the identity \begin{align*} \tan^2 x + \tan^2 \left( \frac{\pi}{2} - x \right) &= \left( \tan x + \tan \left( \frac{\pi}{2} - x \right) \right)^2 - 2 \\ &= \left( \frac{\sin x}{\cos x} + \frac{\sin \left( \frac{\pi}{2} - x \right)}{\cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\ &= \left( \frac{\sin x \cos \left( \frac{\pi}{2} - x \right) + \sin \left( \frac{\pi}{2} - x \right) \cos x}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\ &= \left( \frac{\sin \frac{\pi}{2}}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \\ &= \left( \frac{1}{\cos x \sin x} \right)^2 - 2 \\ &= \left( \frac{2}{\sin 2x} \right)^2 - 2 \\ &= \frac{4}{\sin^2 2x} - 2 \end{align*}
Hence, \begin{align*} \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) &= \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) \end{align*}
Note that \begin{align*} \sin^2 \frac{\pi}{8} &= \frac{1 - \cos \frac{\pi}{4}}{2} = \frac{2 - \sqrt{2}}{4} \\ \sin^2 \frac{3\pi}{8} &= \frac{1 - \cos \frac{3\pi}{4}}{2} = \frac{2 + \sqrt{2}}{4} \end{align*}
Thus, \begin{align*} \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) &= \left( \frac{16}{2 - \sqrt{2}} - 2 \right) \left( \frac{16}{2 + \sqrt{2}} - 2 \right) \\ &= (14 + 8\sqrt{2})(14 - 8\sqrt{2}) \\ &= 68 \end{align*}
Therefore, the answer is \(\boxed{\textbf{(B) } 68}\).
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.