Difference between revisions of "2024 AMC 12A Problems/Problem 23"
(→Solution 1 (Trigonometric Identities)) |
(→Problem) |
||
Line 4: | Line 4: | ||
<math>\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84</math> | <math>\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84</math> | ||
− | + | ==Solution 1 (Trigonometric Identities)== | |
First, notice that | First, notice that |
Revision as of 20:04, 8 November 2024
Problem
What is the value of
Solution 1 (Trigonometric Identities)
First, notice that
Here, we make use of the fact that
Hence,
Note that
and
Hence,
Therefore, the answer is .
~tsun26
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.