Difference between revisions of "2024 AMC 10B Problems/Problem 6"

m (Problem)
(Solution 1)
Line 6: Line 6:
 
==Solution 1==
 
==Solution 1==
  
<math>2024 = 44 \cdot 46</math>, <math>sqrt(44 + 46) * 2</math> = <math>180</math>, so the solution is <math>\boxed{\textbf{(B) }180}</math>
+
<math>2024 = 44 \cdot 46</math>, <math>\sqrt{44 + 46} \cdot 2</math> = <math>180</math>, so the solution is <math>\boxed{\textbf{(B) }180}</math>
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2024|ab=B|num-b=5|num-a=7}}
 
{{AMC10 box|year=2024|ab=B|num-b=5|num-a=7}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:19, 14 November 2024

Problem

A rectangle has integer length sides and an area of 2024. What is the least possible perimeter of the rectangle?

$\textbf{(A) } 160 \qquad\textbf{(B) } 180 \qquad\textbf{(C) } 16 \qquad\textbf{(D) } 17 \qquad\textbf{(E) } 18$

Solution 1

$2024 = 44 \cdot 46$, $\sqrt{44 + 46} \cdot 2$ = $180$, so the solution is $\boxed{\textbf{(B) }180}$

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png