Difference between revisions of "2024 AMC 10B Problems/Problem 6"

(Solution 1)
Line 21: Line 21:
  
 
Solution by [[User:IshikaSaini|IshikaSaini]].
 
Solution by [[User:IshikaSaini|IshikaSaini]].
 +
 +
==Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)==
 +
 +
https://youtu.be/QLziG_2e7CY?feature=shared
 +
 +
~ Pi Academy
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2024|ab=B|num-b=5|num-a=7}}
 
{{AMC10 box|year=2024|ab=B|num-b=5|num-a=7}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 10:00, 14 November 2024

Problem

A rectangle has integer length sides and an area of 2024. What is the least possible perimeter of the rectangle?

$\textbf{(A) } 160 \qquad\textbf{(B) } 180 \qquad\textbf{(C) } 16 \qquad\textbf{(D) } 17 \qquad\textbf{(E) } 18$

Solution 1 - Prime Factorization

We can start by assigning the values x and y for both sides. Here is the equation representing the area:


$x \cdot y = 2024$

Let's write out 2024 fully factorized.


$2^3 \cdot 11 \cdot 23$

Since we know that $x^2 > (x+1)(x-1)$, we want the two closest numbers possible. After some quick analysis, those two numbers are $44$ and $46$. $\\44+46=90$

Now we multiply by $2$ and get $\boxed{\textbf{(B) }180}.$

Solution by IshikaSaini.

Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)

https://youtu.be/QLziG_2e7CY?feature=shared

~ Pi Academy

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png